scispace - formally typeset
Search or ask a question

Showing papers by "Steffen Stenger published in 2000"


Journal ArticleDOI
TL;DR: CD8+ cytotoxic T lymphocytes reduced the viability of the intracellular MTB, providing evidence that CD8+ T cell recognition of MHC class I-restricted epitopes of these MTB antigens can contribute to effective immunity against the pathogen.
Abstract: Studies of mouse models of tuberculosis (TB) infection have indicated a central role for MHC class I-restricted CD8+ T cells in protective immunity. To define antigens and epitopes of Mycobacterium tuberculosis (MTB) proteins that are presented by infected cells to CD8+ T cells, we screened 40 MTB proteins for HLA class I A*0201-binding motifs. Peptides that bound with high affinity to purified HLA molecules were subsequently analyzed for recognition by CD8+ cytotoxic T lymphocytes. We identified three epitopes recognized by CD8+ T cells from patients recovering from TB infection. Those three epitopes were derived from three different antigens: thymidylate synthase (ThyA 30–38 ), RNA polymerase β-subunit (RpoB 127–135 ), and a putative phosphate transport system permease protein A-1 (PstA1 75–83 ). In addition, CD8+ T cell lines specific for three peptides (ThyA 30–38 , PstA1 75–83 , and 85B 15–23 ) were generated from peripheral blood mononuclear cells of normal HLA-A*0201 donors. These CD8+ T cell lines specifically recognized MTB-infected macrophages, as demonstrated by production of IFN-γ and lysis of the infected target cells. Finally, CD8+ cytotoxic T lymphocytes reduced the viability of the intracellular MTB, providing evidence that CD8+ T cell recognition of MHC class I-restricted epitopes of these MTB antigens can contribute to effective immunity against the pathogen.

192 citations


Journal ArticleDOI
TL;DR: Infecting dendritic cells with a virulent strain of M. tuberculosis shows that IL-10 converts DC into macrophage-like cells, thereby inducing the growth inhibition of an intracellular pathogen.
Abstract: Dendritic cells (DC) are unique in their ability to initiate a primary immune response by the presentation of soluble Ags to T cells. Recent studies have shown that DC also phagocytose particulate Ags including the intracellular pathogen Mycobacterium tuberculosis. However, it is not known whether DC contain the growth of intracellular organisms or allow unlimited replication. To address this question, we infected human DC with a virulent strain of M. tuberculosis and monitored the intracellular growth. The bacteria grew two orders of magnitude within 7 days of culture. Among cytokines known to modulate mycobacterial growth particularly in murine macrophages (TNF-alpha, IFN-gamma, TGF-beta, IL-4), only IL-10 modulated the growth in human DC. This effect was specific for immature dendritic cells, as IL-10 did not induce growth inhibition in human macrophages. In searching for the mechanism of growth inhibition, we found that IL-10 induces the down-regulation of the DC marker CD1, while the macrophage marker CD14 was up-regulated. Functionally, IL-10-treated cells had a reduced capacity to induce an alloresponse, but phagocytic uptake of M. tuberculosis was more efficient. We also show that DC are inferior to macrophages in containing mycobacterial growth. These findings show that IL-10 converts DC into macrophage-like cells, thereby inducing the growth inhibition of an intracellular pathogen. At the site of a local immune response, such as a tuberculous granuloma, IL-10 might therefore participate in the composition of the cellular microenvironment by affecting the maturity and function of DC.

154 citations


Journal ArticleDOI
TL;DR: Data indicate that target cell nuclear apoptosis is not a requirement for CTL-mediated killing of intracellular M. tuberculosis, and the antimicrobial effector function of CD8+ CTL was not diminished by inhibition of caspase activity.
Abstract: Two subsets of human CTL have been defined based upon phenotype and function: CD4(-) CD8(-) double-negative (DN) CTL lyse susceptible targets via Fas-Fas ligand interaction and CD8(+) CTL via the granule exocytosis pathway. CD8(+) CTL, but not DN CTL, can mediate an antimicrobial activity against Mycobacterium tuberculosis-infected target cells that is dependent on cytotoxic granules that contain granulysin. We investigated the role of nuclear apoptosis for the antimicrobial effector function of CD1-restricted CTL using the caspase inhibitor N:-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. We found that DN CTL-induced target cell lysis was completely dependent on caspase activation, whereas the cytolytic activity of CD8(+) CTL was caspase independent. However, both DN and CD8(+) CTL-induced nuclear apoptosis required caspase activation. More important, the antimicrobial effector function of CD8(+) CTL was not diminished by inhibition of caspase activity. These data indicate that target cell nuclear apoptosis is not a requirement for CTL-mediated killing of intracellular M. tuberculosis.

45 citations