scispace - formally typeset
Search or ask a question
Institution

International AIDS Vaccine Initiative

NonprofitNew York, New York, United States
About: International AIDS Vaccine Initiative is a nonprofit organization based out in New York, New York, United States. It is known for research contribution in the topics: HIV vaccine & Epitope. The organization has 555 authors who have published 761 publications receiving 47459 citations. The organization is also known as: IAVI.


Papers
More filters
Journal ArticleDOI
09 Oct 2009-Science
TL;DR: High-throughput screening has revealed two new broadly neutralizing antibodies from a clade A–infected donor in Africa, which exhibit great potency and are able to neutralize a wide range of viruses from many different clades.
Abstract: Broadly neutralizing antibodies (bNAbs), which develop over time in some HIV-1-infected individuals, define critical epitopes for HIV vaccine design. Using a systematic approach, we have examined neutralization breadth in the sera of about 1800 HIV-1-infected individuals, primarily infected with non-clade B viruses, and have selected donors for monoclonal antibody (mAb) generation. We then used a high-throughput neutralization screen of antibody-containing culture supernatants from about 30,000 activated memory B cells from a clade A-infected African donor to isolate two potent mAbs that target a broadly neutralizing epitope. This epitope is preferentially expressed on trimeric Envelope protein and spans conserved regions of variable loops of the gp120 subunit. The results provide a framework for the design of new vaccine candidates for the elicitation of bNAb responses.

1,753 citations

Journal ArticleDOI
22 Sep 2011-Nature
TL;DR: Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes.
Abstract: Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies that neutralize broadly across clades. Many of the new monoclonal antibodies are almost tenfold more potent than the recently described PG9, PG16 and VRC01 broadly neutralizing monoclonal antibodies and 100-fold more potent than the original prototype HIV broadly neutralizing monoclonal antibodies. The monoclonal antibodies largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV broadly neutralizing monoclonal antibodies from several donors that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.

1,473 citations

Journal ArticleDOI
21 Aug 2020-Science
TL;DR: A role for potent neutralizing antibodies (nAbs) in prophylaxis, and potentially therapy, of COVID-19 is suggested, as indicated by maintained weight and low lung viral titers in treated animals, and the passive transfer of a nAb provides protection against disease in high-dose SARS-CoV-2 challenge in Syrian hamsters.
Abstract: Countermeasures to prevent and treat coronavirus disease 2019 (COVID-19) are a global health priority. We enrolled a cohort of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-recovered participants, developed neutralization assays to investigate antibody responses, adapted our high-throughput antibody generation pipeline to rapidly screen more than 1800 antibodies, and established an animal model to test protection. We isolated potent neutralizing antibodies (nAbs) to two epitopes on the receptor binding domain (RBD) and to distinct non-RBD epitopes on the spike (S) protein. As indicated by maintained weight and low lung viral titers in treated animals, the passive transfer of a nAb provides protection against disease in high-dose SARS-CoV-2 challenge in Syrian hamsters. The study suggests a role for nAbs in prophylaxis, and potentially therapy, of COVID-19. The nAbs also define protective epitopes to guide vaccine design.

1,224 citations

Journal ArticleDOI
16 Sep 2011-Science
TL;DR: Anti-HIV broadly neutralizing antibodies with similar specificities and modes of binding were found in multiple HIV-infected individuals, and cloned 576 new HIV antibodies from four unrelated individuals to determine whether they are part of a larger group of related molecules.
Abstract: Passive transfer of broadly neutralizing HIV antibodies can prevent infection, which suggests that vaccines that elicit such antibodies would be protective. Thus far, however, few broadly neutralizing HIV antibodies that occur naturally have been characterized. To determine whether these antibodies are part of a larger group of related molecules, we cloned 576 new HIV antibodies from four unrelated individuals. All four individuals produced expanded clones of potent broadly neutralizing CD4-binding-site antibodies that mimic binding to CD4. Despite extensive hypermutation, the new antibodies shared a consensus sequence of 68 immunoglobulin H (IgH) chain amino acids and arise independently from two related IgH genes. Comparison of the crystal structure of one of the antibodies to the broadly neutralizing antibody VRC01 revealed conservation of the contacts to the HIV spike.

1,110 citations

Journal ArticleDOI
26 May 2011-Nature
TL;DR: It is reported that SIV vaccines that include rhesus cytomegalovirus (RhCMV) vectors establish indefinitely persistent, high-frequency, SIV-specific effector memory T-cell (TEM) responses at potential sites of SIV replication in rhesu macaques and stringently control highly pathogenic SIVMAC239 infection early after mucosal challenge.
Abstract: The acquired immunodeficiency syndrome (AIDS)-causing lentiviruses human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) effectively evade host immunity and, once established, infections with these viruses are only rarely controlled by immunological mechanisms. However, the initial establishment of infection in the first few days after mucosal exposure, before viral dissemination and massive replication, may be more vulnerable to immune control. Here we report that SIV vaccines that include rhesus cytomegalovirus (RhCMV) vectors establish indefinitely persistent, high-frequency, SIV-specific effector memory T-cell (T(EM)) responses at potential sites of SIV replication in rhesus macaques and stringently control highly pathogenic SIV(MAC239) infection early after mucosal challenge. Thirteen of twenty-four rhesus macaques receiving either RhCMV vectors alone or RhCMV vectors followed by adenovirus 5 (Ad5) vectors (versus 0 of 9 DNA/Ad5-vaccinated rhesus macaques) manifested early complete control of SIV (undetectable plasma virus), and in twelve of these thirteen animals we observed long-term (≥1 year) protection. This was characterized by: occasional blips of plasma viraemia that ultimately waned; predominantly undetectable cell-associated viral load in blood and lymph node mononuclear cells; no depletion of effector-site CD4(+) memory T cells; no induction or boosting of SIV Env-specific antibodies; and induction and then loss of T-cell responses to an SIV protein (Vif) not included in the RhCMV vectors. Protection correlated with the magnitude of the peak SIV-specific CD8(+) T-cell responses in the vaccine phase, and occurred without anamnestic T-cell responses. Remarkably, long-term RhCMV vector-associated SIV control was insensitive to either CD8(+) or CD4(+) lymphocyte depletion and, at necropsy, cell-associated SIV was only occasionally measurable at the limit of detection with ultrasensitive assays, observations that indicate the possibility of eventual viral clearance. Thus, persistent vectors such as CMV and their associated T(EM) responses might significantly contribute to an efficacious HIV/AIDS vaccine.

963 citations


Authors

Showing all 558 results

NameH-indexPapersCitations
Richard K. Wilson173463260000
Dennis R. Burton16468390959
Ian A. Wilson15897198221
Andrew J. McMichael13866474567
Dan H. Barouch9244735945
Andrew B. Ward9136830332
Linda-Gail Bekker9058830721
Michael S. Seaman8730329478
Richard T. Wyatt8419033316
Robert J. Wilkinson8043326292
Richard A. Kaslow7024726047
Lindsey R. Baden6729618243
David Nemazee6616914879
William R. Schief6617915135
Susan Allen6426614480
Network Information
Related Institutions (5)
Pasteur Institute
50.3K papers, 2.5M citations

86% related

University of Massachusetts Medical School
31.8K papers, 1.9M citations

85% related

National Institutes of Health
297.8K papers, 21.3M citations

84% related

World Health Organization
22.2K papers, 1.3M citations

84% related

Fred Hutchinson Cancer Research Center
30.9K papers, 2.2M citations

84% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20224
202154
202069
201954
201841
201765