scispace - formally typeset
Search or ask a question

Showing papers by "Stephen E. Williams published in 2014"


Journal ArticleDOI
TL;DR: Microhabitats have extraordinary potential to buffer climate and likely reduce mortality during extreme climate events, and predicted changes in distribution due to mortality and habitat shifts that are derived from macroclimatic samples and that assume uniform changes in microclimates relative to macroclimates may be overly pessimistic.
Abstract: Extreme weather events, such as unusually hot or dry conditions, can cause death by exceeding physiological limits, and so cause loss of population. Survival will depend on whether or not susceptible organisms can find refuges that buffer extreme conditions. Microhabitats offer different microclimates to those found within the wider ecosystem, but do these microhabitats effectively buffer extreme climate events relative to the physiological requirements of the animals that frequent them? We collected temperature data from four common microhabitats (soil, tree holes, epiphytes, and vegetation) located from the ground to canopy in primary rainforests in the Philippines. Ambient temperatures were monitored from outside of each microhabitat and from the upper forest canopy, which represent our macrohabitat controls. We measured the critical thermal maxima (CTmax) of frog and lizard species, which are thermally sensitive and inhabit our microhabitats. Microhabitats reduced mean temperature by 1–2 °C and reduced the duration of extreme temperature exposure by 14–31 times. Microhabitat temperatures were below the CTmax of inhabitant frogs and lizards, whereas macrohabitats consistently contained lethal temperatures. Microhabitat temperatures increased by 0.11–0.66 °C for every 1 °C increase in macrohabitat temperature, and this nonuniformity in temperature change influenced our forecasts of vulnerability for animal communities under climate change. Assuming uniform increases of 6 °C, microhabitats decreased the vulnerability of communities by up to 32-fold, whereas under nonuniform increases of 0.66 to 3.96 °C, microhabitats decreased the vulnerability of communities by up to 108-fold. Microhabitats have extraordinary potential to buffer climate and likely reduce mortality during extreme climate events. These results suggest that predicted changes in distribution due to mortality and habitat shifts that are derived from macroclimatic samples and that assume uniform changes in microclimates relative to macroclimates may be overly pessimistic. Nevertheless, even nonuniform temperature increases within buffered microhabitats would still threaten frogs and lizards.

361 citations



Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of the key properties of refugia that promote species' persistence under climate change, including their capacity to buffer species from climate change; sustain long-term population viability and evolutionary processes; and minimize the potential for deleterious species interactions.
Abstract: Identifying refugia is a critical component of effective conservation of biodiversity under anthropogenic climate change. However, despite a surge in conceptual and practical interest, identifying refugia remains a significant challenge across diverse continental landscapes. We provide an overview of the key properties of refugia that promote species' persistence under climate change, including their capacity to (i) buffer species from climate change; (ii) sustain long-term population viability and evolutionary processes; (iii) minimize the potential for deleterious species interactions, provided that the refugia are (iv) available and accessible to species under threat. Further, we classify refugia in terms of the environmental and biotic stressors that they provide protection from (i.e. thermal, hydric, cyclonic, pyric and biotic refugia), but ideally refugia should provide protection from a multitude of stressors. Our systematic characterization of refugia facilitates the identification of refugia in the Australian landscape. Challenges remain, however, specifically with respect to how to assess the quality of refugia at the level of individual species and whole species assemblages. It is essential that these challenges are overcome before refugia can live up to their acclaim as useful targets for conservation and management in the context of climate change.

91 citations


Journal ArticleDOI
TL;DR: The need for a next generation of predictive models that account for species' ability to move within microhabitats to exploit favourable buffered microclimates is illustrated.
Abstract: Vegetated habitats contain a variety of fine-scale features that can ameliorate temperate extremes. These buffered microhabitats may be used by species to evade extreme weather and novel climates in the future. Yet, the magnitude and extent of this buffering on a global scale remains unknown. Across all tropical continents and using 36 published studies, we assessed temperature buffering from within microhabitats across various habitat strata and structures (e.g. soil, logs, epiphytes and tree holes) and compared them to non-buffered macro-scale ambient temperatures (the thermal control). Microhabitats buffered temperature by 3.9°C and reduced maximum temperatures by 3.5°C. Buffering was most pronounced in tropical lowlands where temperatures were most variable. With the expected increase in extreme weather events, microhabitats should provide species with a local layer of protection that is not captured by traditional climate assessments, which are typically derived from macro-scale temperatures (e.g. satellites). Our data illustrate the need for a next generation of predictive models that account for species' ability to move within microhabitats to exploit favourable buffered microclimates.

77 citations


Journal ArticleDOI
TL;DR: This study uses statistical downscaling to account for environmental factors and develops high-resolution estimates of daily maximum temperatures for a 36 000 km2 study area over a 38-year period that consistently place focal species within their fundamental thermal niche, whereas coarsely resolved layers do not.
Abstract: To assess a species' vulnerability to climate change, we commonly use mapped environmental data that are coarsely resolved in time and space. Coarsely resolved temperature data are typically inaccurate at predicting temperatures in microhabitats used by an organism and may also exhibit spatial bias in topographically complex areas. One consequence of these inaccuracies is that coarsely resolved layers may predict thermal regimes at a site that exceed species' known thermal limits. In this study, we use statistical downscaling to account for environmental factors and develop high-resolution estimates of daily maximum temperatures for a 36 000 km2 study area over a 38-year period. We then demonstrate that this statistical downscaling provides temperature estimates that consistently place focal species within their fundamental thermal niche, whereas coarsely resolved layers do not. Our results highlight the need for incorporation of fine-scale weather data into species' vulnerability analyses and demonstrate that a statistical downscaling approach can yield biologically relevant estimates of thermal regimes.

58 citations


Journal ArticleDOI
TL;DR: In this article, the authors assessed spatial patterns in litter processes from local to regional scales, at sites throughout the wet tropical rain forests of northern Australia, and determined the controls (e.g., climate, soil, plant community composition) on annual litter standing crop, annual litterfall rate and in situ leaf litter decomposability.
Abstract: Understanding the spatial variability in plant litter processes is essential for accurate comprehension of biogeochemical cycles and ecosystem function. We assessed spatial patterns in litter processes from local to regional scales, at sites throughout the wet tropical rain forests of northern Australia. We aimed to determine the controls (e.g., climate, soil, plant community composition) on annual litter standing crop, annual litterfall rate and in situ leaf litter decomposability. The level of spatial variance in these components, and leaf litter N, P, Ca, lignin, α-cellulose and total phenolics, was determined from within the scale of subregion, to site (1 km transects) to local/plot (~30 m2). Overall, standing crop was modeled with litterfall and its chemical composition, in situ decomposability, soil Na, and topography (r2 = 0.69, 36 plots). Litterfall was most closely aligned with plant species richness and stem density (negative correlation); leaf decomposability with leaf-P and lignin, soil Na, and dry season moisture (r2 = 0.89, 40 plots). The predominant scale of variability in litterfall rates was local (plot), while litter standing crop and α-cellulose variability was more evenly distributed across spatial scales. Litter decomposability, N, P and phenolics were more aligned with subregional differences. Leaf litter C, lignin and Ca varied most at the site level, suggesting more local controls. We show that variability in litter quality and decomposability are more easily accounted for spatially than litterfall rates, which vary widely over short distances possibly in response to idiosyncratic patterns of disturbance.

30 citations


Journal ArticleDOI
20 Feb 2014-PLOS ONE
TL;DR: Flightless ground beetles are among the most vulnerable taxa to climate change impacts so far investigated in the Wet Tropics World Heritage Area of Australia, and their findings have dramatic implications for all other flightless insect taxa and the future biodiversity of this region.
Abstract: With the impending threat of climate change, greater understanding of patterns of species distributions and richness and the environmental factors driving them are required for effective conservation efforts. Species distribution models enable us to not only estimate geographic extents of species and subsequent patterns of species richness, but also generate hypotheses regarding environmental factors determining these spatial patterns. Projected changes in climate can then be used to predict future patterns of species distributions and richness. We created distribution models for most of the flightless ground beetles (Carabidae) within the Wet Tropics World Heritage Area of Australia, a major component of regionally endemic invertebrates. Forty-three species were modelled and the environmental correlates of these distributions and resultant patterns of species richness were examined. Flightless ground beetles generally inhabit upland areas characterised by stable, cool and wet environmental conditions. These distribution and richness patterns are best explained using the time-stability hypothesis as this group's primary habitat, upland rainforest, is considered to be the most stable regional habitat. Projected changes in distributions indicate that as upward shifts in distributions occur, species currently confined to lower and drier mountain ranges will be more vulnerable to climate change impacts than those restricted to the highest and wettest mountains. Distribution models under projected future climate change suggest that there will be reductions in range size, population size and species richness under all emission scenarios. Eighty-eight per cent of species modelled are predicted to decline in population size by over 80%, for the most severe emission scenario by the year 2080. These results suggest that flightless ground beetles are among the most vulnerable taxa to climate change impacts so far investigated in the Wet Tropics World Heritage Area. These findings have dramatic implications for all other flightless insect taxa and the future biodiversity of this region.

20 citations


Journal ArticleDOI
TL;DR: In this paper, the authors quantified the drivers of seasonality in litterfall and leaf decomposability using plots throughout the Australian wet tropical region and found that the seasonality of litter falls mostly in the summer (wet, warm) months in the region, but other peaks occurred throughout the year.
Abstract: . The seasonality of litter inputs in forests has important implications for understanding ecosystem processes and biogeochemical cycles. We quantified the drivers of seasonality in litterfall and leaf decomposability using plots throughout the Australian wet tropical region. Litter fell mostly in the summer (wet, warm) months in the region, but other peaks occurred throughout the year. Litterfall seasonality was modelled well with the level of deciduousness of the site (plots with more deciduous species had lower seasonality than evergreen plots), temperature (higher seasonality in the uplands), disturbance (lower seasonality with more early secondary species) and soil fertility (higher seasonality with higher N : P/P limitation) (SL total litterfall model 1 = deciduousness + soil N : P + early secondary sp.: r2 = 0.63, n = 30; model 2 = temperature + early secondary sp. + soil N : P: r2 = 0.54, n = 30; SL leaf = temperature + early secondary sp. + rainfall seasonality: r2 = 0.39, n = 30). Leaf litter decomposability was lower in the dry season than in the wet season, driven by higher phenolic concentrations in the dry, with the difference exacerbated particularly by lower dry season moisture. Our results are contrary to the global trend for tropical rainforests; in that seasonality of litterfall input was generally higher in wetter, cooler, evergreen forests, compared to generally drier, warmer, semi-deciduous sites that had more uniform monthly inputs. We consider this due to more diverse litter shedding patterns in semi-deciduous and raingreen rainforest sites, and an important consideration for ecosystem modellers. Seasonal changes in litter quality are likely to have impacts on decomposition and biogeochemical cycles in these forests due to the litter that falls in the dry season being more recalcitrant to decay.

16 citations


Book Chapter
01 Sep 2014
TL;DR: The tropical montane cloud forest is a rare environment, defined and limited by the persistent presence of clouds and mists, and accounts for only 0.26% of the Earth's land surface.
Abstract: [Extract] Tropical montane cloud forest is a rare environment, defined and limited by the persistent presence of clouds and mists, and accounts for only 0.26% of the Earth's land surface (Bubb et al. 2004). Despite this small area, tropical montane systems contain ~25% of all terrestrial biodiversity and therefore represent important centres of biodiversity, evolution and cultural significance. Australia's only tropical montane forest occurs in the Wet Tropics World Heritage Area, in North Queensland. This globally significant region is only 0.1 % of Australia's land mass, but contains ~30% of Australia's vertebrate biodiversity, of which almost 100 species occur nowhere else on Earth (Williams 2006). In conjunction with the Great Barrier Reef, these amazing natural systems bring in billions of dollars per year to the regional and national economy.

1 citations