scispace - formally typeset
Search or ask a question

Showing papers by "Steven L. Ceccio published in 2021"


Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a surface modification technique that yields a thin film of linear chain siloxane molecules covalently tethered to a surface and investigate and characterize the liquid-like morphology of these surfaces in detail as the key contributing factor to their antifouling performance.
Abstract: A wide range of liquid and solid contaminants can adhere to everyday functional surfaces and dramatically alter their performance. Numerous surface modification strategies have been developed that can reduce the fouling of some solids or repel certain liquids but are generally limited to specific contaminants or class of foulants. This is due to the typically distinct mechanisms that are employed to repel liquids vs solids. Here, we demonstrate a rapid and facile surface modification technique that yields a thin film of linear chain siloxane molecules covalently tethered to a surface. We investigate and characterize the liquid-like morphology of these surfaces in detail as the key contributing factor to their anti-fouling performance. This surface treatment is extremely durable and readily repels a broad range of liquids with varying surface tensions and polarities, including water, oils, organic solvents, and even fluorinated solvents. Additionally, the flexible, liquid-like nature of these surfaces enables interfacial slippage, which dramatically reduces adhesion to various types of solids, including ice, wax, calcined gypsum, and cyanoacrylate adhesives, and also minimizes the nucleation of inorganic scale. The developed surfaces are durable and simple to fabricate, and they minimize fouling by both liquids and solids simultaneously.

11 citations


Journal ArticleDOI
TL;DR: In this article, the effect of compressibility of the bubbly mixture is determined by estimating the local speed of sound using homogeneous "frozen model" and homogeneous 'equilibrium model' to highlight flow features such as the pair of cavitating spanwise vortices in the shear layer and propagating bubbly shock front.

9 citations


Journal ArticleDOI
TL;DR: In this article, the role of the presence of high void-fraction regions in the near-wake region on the process of vortex formation and shedding was explored using traditional flow visualization combined with time-resolved void fraction flow fields based on X-ray densitometry.
Abstract: Cavitating flow in the wake of a wedge-shaped bluff body is examined to understand the role of the presence of high void-fraction regions in the near-wake region on the process of vortex formation and shedding. Previous studies have noted that developed cavitation forming in the wake of bluff bodies typically leads to an increase in the vortex shedding rate, peaking at a particular cavitation number. Further reduction in cavitation number leads to a return to lower shedding rates as the cavity grows into a super-cavity. The underlying flow processes that lead to this phenomenon are explored using traditional flow visualisation combined with time-resolved void-fraction flow fields based on X-ray densitometry. These measurements allow us to relate the compressibility of the near-wake bubbly flow to the underlying flow processes. Specifically, we use proper orthogonal decomposition (POD) of the void-fraction fields to show that the increased rate of vortex shedding is associated with a pulsating mode of the void-fraction flow field, compared with a sinusoidal variation corresponding to the lower void-fraction shedding processes similar to that of the non-cavitating wake. The pulsating mode becomes more pronounced when the wake void fraction increases with decreasing cavitation number, with the maximum shedding occurring near the point that the wake flow becomes locally supersonic. The important influence of flow compressibility on the wake dynamics is confirmed through the examination of the effect of non-condensable gas injection.

8 citations


Journal ArticleDOI
TL;DR: In this article, the effect of sprayed superhydrophobic surfaces (SHSs) was determined for two external turbulent boundary layer (TBL) flows using near-wall laser Doppler velocity measurements for a series of tailored SHSs.
Abstract: In the present study, the drag-reducing effect of sprayed superhydrophobic surfaces (SHSs) is determined for two external turbulent boundary layer (TBL) flows. We infer the modification of skin friction created beneath TBLs using near-wall laser Doppler velocity measurements for a series of tailored SHSs. Measurements of the near-wall Reynolds stresses were used to infer reduction in skin friction between 8% and 36% in the channel flow. The best candidate SHS was then selected for application on a towed submersible body with a SUBOFF profile. The SHS was applied to roughly 60% of the model surface over the parallel midbody of the model. The measurements of the towed resistance showed an average decrease in the overall resistance from 2% to 12% depending on the speed and depth of the towed model, which suggests a SHS friction drag reduction of 4-24% with the application of the SHS on the model. The towed model results are consistent with the expected drag reduction inferred from the measurements of a near-zero pressure gradient TBL channel flow.

5 citations