scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Fluid Mechanics in 2021"


Journal ArticleDOI
TL;DR: In this article, a new data reconstruction method with supervised machine learning techniques inspired by super resolution and inbetweening is presented to recover high-resolution turbulent flows from grossly coarse flow data in space and time.
Abstract: We present a new data reconstruction method with supervised machine learning techniques inspired by super resolution and inbetweening to recover high-resolution turbulent flows from grossly coarse flow data in space and time. For the present machine-learning-based data reconstruction, we use the downsampled skip-connection/multiscale model based on a convolutional neural network, incorporating the multiscale nature of fluid flows into its network structure. As an initial example, the model is applied to the two-dimensional cylinder wake at . The present model reconstructs high-resolved turbulent flows from very coarse input data in space, and also reproduces the temporal evolution for appropriately chosen time interval. The dependence on the number of training snapshots and duration between the first and last frames based on a temporal two-point correlation coefficient are also assessed to reveal the capability and robustness of spatio-temporal super resolution reconstruction. These results suggest that the present method can perform a range of flow reconstructions in support of computational and experimental efforts.

107 citations


Journal ArticleDOI
TL;DR: In this article, an unsupervised learning model that adopts a cycle-consistent generative adversarial network (CycleGAN) that can be trained with unpaired turbulence data for super-resolution reconstruction is presented.
Abstract: Recent attempts to use deep learning for super-resolution reconstruction of turbulent flows have used supervised learning, which requires paired data for training. This limitation hinders more practical applications of super-resolution reconstruction. Therefore, we present an unsupervised learning model that adopts a cycle-consistent generative adversarial network (CycleGAN) that can be trained with unpaired turbulence data for super-resolution reconstruction. Our model is validated using three examples: (i) recovering the original flow field from filtered data using direct numerical simulation (DNS) of homogeneous isotropic turbulence; (ii) reconstructing full-resolution fields using partially measured data from the DNS of turbulent channel flows; and (iii) generating a DNS-resolution flow field from large-eddy simulation (LES) data for turbulent channel flows. In examples (i) and (ii), for which paired data are available for supervised learning, our unsupervised model demonstrates qualitatively and quantitatively similar performance as that of the best supervised learning model. More importantly, in example (iii), where supervised learning is impossible, our model successfully reconstructs the high-resolution flow field of statistical DNS quality from the LES data. Furthermore, we find that the present model has almost universal applicability to all values of Reynolds numbers within the tested range. This demonstrates that unsupervised learning of turbulence data is indeed possible, opening a new door for the wide application of super-resolution reconstruction of turbulent fields.

86 citations


Journal ArticleDOI
TL;DR: In this paper, two models based on convolutional neural networks are trained to predict the two-dimensional instantaneous velocity-fluctuation fields at different wall-normal locations in a turbulent open-channel flow, using the wall-shear-stress components and the wall pressure as inputs.
Abstract: Two models based on convolutional neural networks are trained to predict the two-dimensional instantaneous velocity-fluctuation fields at different wall-normal locations in a turbulent open-channel flow, using the wall-shear-stress components and the wall pressure as inputs. The first model is a fully convolutional neural network (FCN) which directly predicts the fluctuations, while the second one reconstructs the flow fields using a linear combination of orthonormal basis functions, obtained through proper orthogonal decomposition (POD), and is hence named FCN-POD. Both models are trained using data from direct numerical simulations at friction Reynolds numbers of the original training data. We expect that these non-intrusive sensing models will play an important role in applications related to closed-loop control of wall-bounded turbulence.

61 citations


Journal ArticleDOI
TL;DR: In this article, the authors proposed a new wall-scaling algorithm for turbulent flows near smooth walls, where the streamwise velocity fluctuation is bounded by a boundedness on the dissipation rate at the wall.
Abstract: The celebrated wall-scaling works for many statistical averages in turbulent flows near smooth walls, but the streamwise velocity fluctuation, owing to the natural constraint of boundedness on the dissipation rate at the wall. This new formula agrees well with the existing data and, in contrast to the logarithmic growth, supports the classical wall-scaling for turbulent intensity at asymptotically high Reynolds numbers.

59 citations


Journal ArticleDOI
TL;DR: In this article, a fully connected neural network (NN) is used to develop a subgrid-scale (SGS) model mapping the relation between the SGS stresses and filtered flow variables in a turbulent channel flow at using the same grid resolution in wall units, providing fairly good agreements of the solutions with the filtered direct numerical simulation (DNS) data.
Abstract: A fully connected neural network (NN) is used to develop a subgrid-scale (SGS) model mapping the relation between the SGS stresses and filtered flow variables in a turbulent channel flow at using the same grid resolution in wall units, providing fairly good agreements of the solutions with the filtered direct numerical simulation (DNS) data. When the grid resolution in wall units is different from that of trained data, this NN-based SGS model does not perform well. This is overcome by training an NN with the datasets having two filters whose sizes are bigger and smaller than the grid size in large eddy simulation (LES). Finally, the limitations of NN-based LES to complex flow are discussed.

52 citations


Journal ArticleDOI
TL;DR: In this paper, a closed-loop strategy was proposed to reduce the drag of a cylinder in laminar flow conditions. But the authors focused on the efficiency and robustness of the identified control strategy and introduced a novel algorithm (S-PPO-CMA) to optimise the sensor layout.
Abstract: This paper focuses on finding a closed-loop strategy to reduce the drag of a cylinder in laminar flow conditions. Deep reinforcement learning algorithms have been implemented to discover efficient control schemes, using two synthetic jets located on the cylinder's poles as actuators and pressure sensors in the wake of the cylinder as feedback observation. The present work focuses on the efficiency and robustness of the identified control strategy and introduces a novel algorithm (S-PPO-CMA) to optimise the sensor layout. An energy-efficient control strategy reducing drag by with negligible impact on performance. Along with a systematic study on sensor number and location, the proposed sparsity-seeking algorithm has achieved a successful optimisation to a reduced five-sensor layout while keeping state-of-the-art performance. These results further highlight the interesting possibilities of reinforcement learning for active flow control and pave the way to efficient, robust and practical implementations of these control techniques in experimental or industrial systems.

51 citations


Journal ArticleDOI
TL;DR: In this article, an analysis of the statistics of the nonlinear terms in resolvent analysis is performed for turbulent Couette flow at Reynolds number 400, where a direct numerical simulation of a minimal flow unit is used to compute the covariance matrix of the velocity.
Abstract: An analysis of the statistics of the nonlinear terms in resolvent analysis is performed in this work for turbulent Couette flow at Reynolds number 400. Data from a direct numerical simulation of a minimal flow unit is used to compute the covariance matrix of the velocity. From the same data, we computed the nonlinear terms of the Navier–Stokes equations (treated as forcing), which allowed us to compute the covariance matrix of the forcing. The quantitative relation between the two covariances via the resolvent operator is confirmed here for the first time, accounting for relevant signal processing issues related to the windowing procedure for frequency-domain quantities. Such exact correspondence allowed the eduction of the most relevant force components for the dominant structures in this flow, which participate in the self-sustaining cycle of turbulence: (i) streamwise vortices and streaks, and (ii) spanwise-coherent fluctuations of spanwise velocity. The results show a dominance by a subset of the nonlinear terms for the prediction of the full statistics of streamwise vortices and streaks; a single term is seen to be dominant for spanwise motions. A relevant feature observed in these cases is that the forcing covariance is dominated by its first eigenfunction, showing that nonlinear terms also have a coherent structure at low frequencies in this flow. Different forcing components are also coherent between them, which leads to constructive and destructive interferences that greatly modify the flow response. These are key features of forcing ‘colour’ for the present flow.

49 citations


Journal ArticleDOI
TL;DR: In this article, the Fourier transform of the two-point space-time correlation, its cross-spectral density (CSD), is computed for two channel flows at friction Reynolds numbers via direct numerical simulations (DNS).
Abstract: In resolvent analyses of turbulent channel flows it has been common practice to neglect or model the nonlinear forcing term that forms the input of the resolvent. However, the spatiotemporal structure of this term is mostly unknown. Here, this nonlinear forcing term is quantified. The Fourier transform of its two-point space–time correlation, its cross-spectral density (CSD), is computed. The CSD is evaluated for two channel flows at friction Reynolds numbers via direct numerical simulations (DNS). The CSDs are computed for energetic structures typical of buffer-layer and large-scale motions, for different temporal frequencies. It is found that the forcing is structured and that its solenoidal part, which is the only one affecting the velocity field, is the combination of an oblique streamwise vortical forcing and a streamwise component that counteract each other, as in a destructive interference. It is shown that a rank-2 approximation of the forcing, with only the most energetic spectral proper orthogonal decomposition (SPOD) modes, leads to the bulk of the response. Moreover, it is found that the nonlinear forcing term has a non-negligible projection onto the linear sub-optimal forcings of resolvent analysis, which demonstrates that the linear optimal forcing is not representative of the nonlinear forcing. Finally, it is clarified that the Cess eddy-viscosity-modelled forcing improves the accuracy of resolvent analysis prediction because the modelled forcing projects onto the linear sub-optimal forcings similarly to DNS data.

48 citations


Journal ArticleDOI
TL;DR: The dynamo process is of great importance in geophysics, planetary science and astrophysics, since magnetic fields are known to play a key role in the dynamics of these systems as discussed by the authors.
Abstract: The generation of a magnetic field in an electrically conducting fluid generally involves the complicated nonlinear interaction of flow turbulence, rotation and field. This dynamo process is of great importance in geophysics, planetary science and astrophysics, since magnetic fields are known to play a key role in the dynamics of these systems. This paper gives an introduction to dynamo theory for the fluid dynamicist. It proceeds by laying the groundwork, introducing the equations and techniques that are at the heart of dynamo theory, before presenting some simple dynamo solutions. The problems currently exercising dynamo theorists are then introduced, along with the attempts to make progress. The paper concludes with the argument that progress in dynamo theory will be made in the future by utilising and advancing some of the current breakthroughs in neutral fluid turbulence such as those in transition, self-sustaining processes, turbulence/mean-flow interaction, statistical and data-driven methods and maintenance and loss of balance.

44 citations


Journal ArticleDOI
TL;DR: In this paper, the interaction between an incident shock wave and a Mach-6 undisturbed hypersonic laminar boundary layer over a cold wall is addressed using direct numerical simulations (DNS) and wall-modelled large-eddy simulations (WMLES) at different angles of incidence.
Abstract: The interaction between an incident shock wave and a Mach-6 undisturbed hypersonic laminar boundary layer over a cold wall is addressed using direct numerical simulations (DNS) and wall-modelled large-eddy simulations (WMLES) at different angles of incidence. At sufficiently high shock-incidence angles, the boundary layer transitions to turbulence via breakdown of near-wall streaks shortly downstream of the shock impingement, without the need of any inflow free-stream disturbances. The transition causes a localized significant increase in the Stanton number and skin-friction coefficient, with high incidence angles augmenting the peak thermomechanical loads in an approximately linear way. Statistical analyses of the boundary layer downstream of the interaction for each case are provided that quantify streamwise spatial variations of the Reynolds analogy factors and indicate a breakdown of the Morkovin's hypothesis near the wall, where velocity and temperature become correlated. A modified strong Reynolds analogy with a fixed turbulent Prandtl number is observed to perform best. Conventional transformations fail at collapsing the mean velocity profiles on the incompressible log law. The WMLES prompts transition and peak heating, delays separation and advances reattachment, thereby shortening the separation bubble. When the shock leads to transition, WMLES provides predictions of DNS peak thermomechanical loads within at a computational cost lower than DNS by two orders of magnitude. Downstream of the interaction, in the turbulent boundary layer, the WMLES agrees well with DNS results for the Reynolds analogy factor, the mean profiles of velocity and temperature, including the temperature peak, and the temperature/velocity correlation.

44 citations


Journal ArticleDOI
TL;DR: In this article, a modal stability analysis showed that pressure-driven pipe flow of an Oldroyd-B fluid is linearly unstable to axisymmetric perturbations.
Abstract: A modal stability analysis shows that pressure-driven pipe flow of an Oldroyd-B fluid is linearly unstable to axisymmetric perturbations, in stark contrast to its Newtonian counterpart which is linearly stable at all Reynolds numbers. The dimensionless groups that govern stability are the Reynolds number being the Weissenberg number), marking a possible paradigm shift in our understanding of transition in rectilinear viscoelastic shearing flows. The predicted unstable eigenfunction should form a template in the search for novel nonlinear elasto-inertial states, and could provide an alternate route to the maximal drag-reduced state in polymer solutions. The latter has thus far been explained in terms of a viscoelastic modification of the nonlinear Newtonian coherent structures.

Journal ArticleDOI
TL;DR: In this paper, a model closure of the multiphase Reynolds-averaged Navier-Stokes (RANS) equations is developed for homogeneous, fully developed gas-particle flows.
Abstract: In this work, model closures of the multiphase Reynolds-averaged Navier–Stokes (RANS) equations are developed for homogeneous, fully developed gas–particle flows. To date, the majority of RANS closures are based on extensions of single-phase turbulence models, which fail to capture complex two-phase flow dynamics across dilute and dense regimes, especially when two-way coupling between the phases is important. In the present study, particles settle under gravity in an unbounded viscous fluid. At sufficient mass loadings, interphase momentum exchange between the phases results in the spontaneous generation of particle clusters that sustain velocity fluctuations in the fluid. Data generated from Eulerian–Lagrangian simulations are used in a sparse regression method for model closure that ensures form invariance. Particular attention is paid to modelling the unclosed terms unique to the multiphase RANS equations (drag production, drag exchange, pressure strain and viscous dissipation). A minimal set of tensors is presented that serve as the basis for modelling. It is found that sparse regression identifies compact, algebraic models that are accurate across flow conditions and robust to sparse training data.

Journal ArticleDOI
TL;DR: In this paper, a quasi-stationary model for the flow inside evaporating binary sessile and pendant droplets was derived and validated, which successfully allows one to predict the prevalence and the intriguing interaction of Rayleigh and/or Marangoni convection on the basis of a phase diagram.
Abstract: For a small sessile or pendant droplet it is generally assumed that gravity does not play any role once the Bond number is small. This is even assumed for evaporating binary sessile or pendant droplets, in which convective flows can be driven due to selective evaporation of one component and the resulting concentration and thus surface tension differences at the air–liquid interface. However, recent studies have shown that in such droplets gravity indeed can play a role and that natural convection can be the dominant driving mechanism for the flow inside evaporating binary droplets (Edwards et al., Phys. Rev. Lett., vol. 121, 2018, 184501; Li et al., Phys. Rev. Lett., vol. 122, 2019, 114501). In this study, we derive and validate a quasi-stationary model for the flow inside evaporating binary sessile and pendant droplets, which successfully allows one to predict the prevalence and the intriguing interaction of Rayleigh and/or Marangoni convection on the basis of a phase diagram for the flow field expressed in terms of the Rayleigh and Marangoni numbers.

Journal ArticleDOI
TL;DR: In this article, the authors study turbulent flows in a smooth straight pipe of circular cross-section up to friction Reynolds number using direct numerical simulation (DNS) of the Navier-Stokes equations.
Abstract: We study turbulent flows in a smooth straight pipe of circular cross-section up to friction Reynolds number using direct numerical simulation (DNS) of the Navier-Stokes equations. The DNS results highlight systematic deviations from Prandtl friction law, amounting to approximately, which would extrapolate to approximately at extreme Reynolds numbers. Data fitting of the DNS friction coefficient yields an estimated von Karman constant, which nicely fits the mean velocity profile, and which supports universality of canonical wall-bounded flows. The same constant also applies to the pipe centreline velocity, thus providing support for the claim that the asymptotic state of pipe flow at extreme Reynolds numbers should be plug flow. At the Reynolds numbers under scrutiny, no evidence for saturation of the logarithmic growth of the inner peak of the axial velocity variance is found. Although no outer peak of the velocity variance directly emerges in our DNS, we provide strong evidence that it should appear at, as a result of turbulence production exceeding dissipation over a large part of the outer wall layer, thus invalidating the classical equilibrium hypothesis.

Journal ArticleDOI
TL;DR: In this paper, the authors study bubble break-up in homogeneous and isotropic turbulence by direct numerical simulations of the two-phase incompressible Navier-Stokes equations.
Abstract: We study bubble break-up in homogeneous and isotropic turbulence by direct numerical simulations of the two-phase incompressible Navier–Stokes equations. We create the turbulence by forcing in physical space and introduce the bubble once a statistically stationary state is reached. We perform a large ensemble of simulations to investigate the effect of the Weber number (the ratio of turbulent and surface tension forces) on bubble break-up dynamics and statistics, including the child bubble size distribution, and discuss the numerical requirements to obtain results independent of grid size. We characterize the critical Weber number below which no break-up occurs and the associated Hinze scale , an order of magnitude smaller than the parent bubble. The separation of scales between the parent and child bubble is a signature of a production process non-local in scale. The formation mechanism of these sub-Hinze scale bubbles relates to rapid large deformation and successive break-ups: the first break-up in a sequence leaves highly deformed bubbles which will break again, without recovering a spherical shape and creating an array of much smaller bubbles. We discuss the application of this scenario to the production of sub-Hinze bubbles under breaking waves.

Journal ArticleDOI
TL;DR: In this article, spectral proper orthogonal decomposition (SPOD) is used for low-rank reconstruction, denoising, frequency-time analysis and prewhitening of a turbulent jet.
Abstract: Four different applications of spectral proper orthogonal decomposition (SPOD) are demonstrated on large-eddy simulation data of a turbulent jet. These are: low-rank reconstruction, denoising, frequency–time analysis and prewhitening. We demonstrate SPOD-based flow-field reconstruction using direct inversion of the SPOD algorithm (frequency-domain approach) and propose an alternative approach based on projection of the time series data onto the modes (time-domain approach). We further present a SPOD-based denoising strategy that is based on hard thresholding of the SPOD eigenvalues. The proposed strategy achieves significant noise reduction while facilitating drastic data compression. In contrast to standard methods of frequency–time analysis such as wavelet transform, a proposed SPOD-based approach yields a spectrogram that characterises the temporal evolution of spatially coherent flow structures. A convolution-based strategy is proposed to compute the time-continuous expansion coefficients. When applied to the turbulent jet data, SPOD-based frequency–time analysis reveals that the intermittent occurrence of large-scale coherent structures is directly associated with high-energy events. This work suggests that the time-domain approach is preferable for low-rank reconstruction of individual snapshots, and the frequency-domain approach for denoising and frequency–time analysis.

Journal ArticleDOI
TL;DR: In this paper, a data-driven approach is taken to quantitatively improve linear resolvent models by deducing an optimal eddy-viscosity field that maximizes the projection of the dominant Resolvent mode to the energy-optimal coherent structure educed using spectral proper orthogonal decomposition (SPOD) of high-fidelity simulations.
Abstract: Response modes computed via linear resolvent analysis of a turbulent mean-flow field have been shown to qualitatively capture characteristics of the observed turbulent coherent structures in both wall-bounded and free shear flows. To make such resolvent models predictive, the nonlinear forcing term must be closed. Strategies to do so include imposing self-consistent sets of triadic interactions, proposing various source models or through turbulence modelling. For the latter, several investigators have proposed using the mean-field eddy viscosity acting linearly on the fluctuation field. In this study, a data-driven approach is taken to quantitatively improve linear resolvent models by deducing an optimal eddy-viscosity field that maximizes the projection of the dominant resolvent mode to the energy-optimal coherent structure educed using spectral proper orthogonal decomposition (SPOD) of data from high-fidelity simulations. We use large-eddy simulation databases for round isothermal jets at subsonic, transonic and supersonic conditions and show that the optimal eddy viscosity substantially improves the agreement between resolvent and SPOD modes, reaching over 90 % agreement at those frequencies where the jet exhibits a low-rank response. We then consider a fixed model for the eddy viscosity and show that with the calibration of a single constant, the results are generally close to the optimal one. In particular, the use of a standard Reynolds-averaged Navier–Stokes eddy-viscosity resolvent model, with a single coefficient, provides substantial agreement between SPOD and resolvent modes for three turbulent jets and across the most energetic wavenumbers and frequencies.

Journal ArticleDOI
TL;DR: In this article, the characteristics of acoustic tones near the nozzle of jets were investigated for Mach numbers between, and they were found to be very similar to the ones reported in this paper.
Abstract: The characteristics of acoustic tones near the nozzle of jets are investigated for Mach numbers between .

Journal ArticleDOI
TL;DR: In this article, the authors extend linear input/output (resolvent) analysis to take into account nonlinear triadic interactions by considering a finite number of harmonics in the frequency domain using the harmonic balance method.
Abstract: We extend linear input/output (resolvent) analysis to take into account nonlinear triadic interactions by considering a finite number of harmonics in the frequency domain using the harmonic balance method. Forcing mechanisms that maximise the drag are calculated using a gradient-based ascent algorithm. By including nonlinearity in the analysis, the proposed frequency-domain framework identifies the worst-case disturbances for laminar-turbulent transition. We demonstrate the framework on a flat-plate boundary layer by considering three-dimensional spanwise-periodic perturbations triggered by a few optimal forcing modes of finite amplitude. Two types of volumetric forcing are considered, one corresponding to a single frequency/spanwise wavenumber pair, and a multi-harmonic where a harmonic frequency and wavenumber are also added. Depending on the forcing strategy, we recover a range of transition scenarios associated with -type mechanisms, including oblique and planar Tollmien–Schlichting waves, streaks and their breakdown. We show that nonlinearity plays a critical role in optimising growth by combining and redistributing energy between the linear mechanisms and the higher perturbation harmonics. With a very limited range of frequencies and wavenumbers, the calculations appear to reach the early stages of the turbulent regime through the generation and breakdown of hairpin and quasi-streamwise staggered vortices.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the fundamental mechanisms of interaction between the propeller wake vortices and an untipped non-lifting wing and found that during the encounter and early penetration phases, tip vortex behavior is strongly influenced by its interaction with the boundary layer of the wing that is manifested by a non-symmetrical evolution and breakdown of the vortex portions travelling along the pressure and suction sides of a wing.
Abstract: The present study investigates the fundamental mechanisms of interaction between the propeller wake vortices and an untipped non-lifting wing. The study consists of a comprehensive experimental survey of a reference propeller–wing configuration with a high thickness parameter and is based on time-resolved visualisations and detailed flow and wall-pressure measurements. The experiment was designed to investigate the dynamics of the propeller blade vortices during the approach, encounter and penetration phases of the interaction and downstream of the body. To this end, three different models of the wing were manufactured including a transparent Perspex model that was crucial to simultaneously visualise the evolution of the vortex branches on the pressure and suction side of the body during the penetration phase. The study gains insight into the fundamental underlying mechanisms of the complex interaction between the propeller tip and blade trailing vortices and the wing for different propeller loadings. It is found that, during the encounter and the early penetration phases, tip vortex behaviour is strongly influenced by its interaction with the boundary layer of the wing that is manifested by a non-symmetrical evolution and breakdown of the vortex portions travelling along the pressure and suction sides of the wing. Reconnection between the vortex lines originating within the vortex core and the wing boundary layer maintains the linkage between the pressure and suction side portions of the vortex during the penetration phase and drives their rejoining downstream of the wing.

Journal ArticleDOI
TL;DR: In this article, the formation of vapour bubbles close to solid, ideally flat, walls is addressed by exploiting a mesoscale description that couples diffuse interface modelling of the two-phase vapour-liquid system with fluctuating hydrodynamics.
Abstract: Heterogeneous nucleation is the most effective mechanism for the inception of phase transformation. Solid walls and impurities act as a catalyst for the formation of a new thermodynamic phase by reducing the activation energy required for a phase change, hence enhancing nucleation. The formation of vapour bubbles close to solid, ideally flat, walls is addressed here by exploiting a mesoscale description that couples diffuse interface modelling of the two-phase vapour–liquid system with fluctuating hydrodynamics, extending previous work by the authors on homogeneous nucleation. The technical focus of this work is to directly account for hydrophobic or hydrophilic walls through appropriate boundary conditions compliant with the fluctuation–dissipation balance, a crucial point in the context of fluctuating hydrodynamics theory. This methodology provides access to the complete dynamics of the nucleation process, from the inception of multiple bubbles up to their long-time macroscopic expansion, on time and spatial scales unaffordable by standard techniques for nucleation, such as molecular dynamics. The analysis mainly focuses on the effect of wall wettability on the nucleation rate, and, albeit qualitatively in agreement with classical nucleation theory predictions, it reveals several discrepancies to be ascribed to layering effects in the liquid close to the boundary and to bubble–bubble interactions. In particular, it is found that, close to moderately hydrophilic surfaces, the most probable nucleation events occur away from the wall through a homogeneous mechanism.

Journal ArticleDOI
TL;DR: In this article, the authors propose an automatable data-driven methodology for robust nonlinear reduced-order modeling from time-resolved snapshot data, where the snapshots are clustered into a few centroids representing the whole ensemble.
Abstract: We propose an automatable data-driven methodology for robust nonlinear reduced-order modelling from time-resolved snapshot data. In the kinematical coarse-graining, the snapshots are clustered into a few centroids representing the whole ensemble. The dynamics is conceptualized as a directed network, where the centroids represent nodes and the directed edges denote possible finite-time transitions. The transition probabilities and times are inferred from the snapshot data. The resulting cluster-based network model constitutes a deterministic–stochastic grey-box model resolving the coherent-structure evolution. This model is motivated by limit-cycle dynamics, illustrated for the chaotic Lorenz attractor and successfully demonstrated for the laminar two-dimensional mixing layer featuring Kelvin–Helmholtz vortices and vortex pairing, and for an actuated turbulent boundary layer with complex dynamics. Cluster-based network modelling opens a promising new avenue with unique advantages over other model-order reductions based on clustering or proper orthogonal decomposition.

Journal ArticleDOI
TL;DR: In this paper, the two-point correlation between the filtered strain-rate and subfilter stress tensors plays a central role in the evolution of filtered-velocity correlation functions, and the eddy-viscosity model based on fractional gradients of order yields better results for the correlations in the streamwise direction.
Abstract: By analysing the Karman–Howarth equation for filtered-velocity fields in turbulent flows, we show that the two-point correlation between the filtered strain-rate and subfilter stress tensors plays a central role in the evolution of filtered-velocity correlation functions. Two-point correlation-based statistical a priori tests thus enable rigorous and physically meaningful studies of turbulence models. Using data from direct numerical simulations of isotropic and channel flow turbulence, we show that local eddy-viscosity models fail to exhibit the long tails observed in the real subfilter stress–strain-rate correlation functions. Stronger non-local correlations may be achieved by defining the eddy-viscosity model based on fractional gradients of order yields better results for the correlations in the streamwise direction, even well into the core channel region. In the spanwise direction, channel flow results show significantly more local interactions. The overall results confirm strong non-locality in the interactions between subfilter stresses and resolved-scale fluid deformation rates, but with non-trivial directional dependencies in non-isotropic flows. Hence, non-local operators thus exhibit interesting modelling capabilities and potential for large-eddy simulations although more developments are required, both on the theoretical and computational implementation fronts.

Journal ArticleDOI
TL;DR: In this article, a sparse identification of nonlinear dynamics (SINDy) for low-dimensionalized complex flow phenomena is performed with two regression methods, the thresholded least square algorithm and the adaptive least absolute shrinkage and selection operator.
Abstract: We perform a sparse identification of nonlinear dynamics (SINDy) for low-dimensionalized complex flow phenomena. We first apply the SINDy with two regression methods, the thresholded least square algorithm and the adaptive least absolute shrinkage and selection operator which show reasonable ability with a wide range of sparsity constant in our preliminary tests, to a two-dimensional single cylinder wake at , its transient process and a wake of two-parallel cylinders, as examples of high-dimensional fluid data. To handle these high-dimensional data with SINDy whose library matrix is suitable for low-dimensional variable combinations, a convolutional neural network-based autoencoder (CNN-AE) is utilized. The CNN-AE is employed to map a high-dimensional dynamics into a low-dimensional latent space. The SINDy then seeks a governing equation of the mapped low-dimensional latent vector. Temporal evolution of high-dimensional dynamics can be provided by combining the predicted latent vector by SINDy with the CNN decoder which can remap the low-dimensional latent vector to the original dimension. The SINDy can provide a stable solution as the governing equation of the latent dynamics and the CNN-SINDy-based modelling can reproduce high-dimensional flow fields successfully, although more terms are required to represent the transient flow and the two-parallel cylinder wake than the periodic shedding. A nine-equation turbulent shear flow model is finally considered to examine the applicability of SINDy to turbulence, although without using CNN-AE. The present results suggest that the proposed scheme with an appropriate parameter choice enables us to analyse high-dimensional nonlinear dynamics with interpretable low-dimensional manifolds.

Journal ArticleDOI
TL;DR: In this paper, the authors examine the collapse of an initially dry column of grains into a shallow water layer and the subsequent generation of waves, showing that the collective entry of the granular material into water governs the wave generation process.
Abstract: The generation of a tsunami wave by an aerial landslide is investigated through model laboratory experiments. We examine the collapse of an initially dry column of grains into a shallow water layer and the subsequent generation of waves. The experiments show that the collective entry of the granular material into water governs the wave generation process. We observe that the amplitude of the wave relative to the water height scales linearly with the Froude number based on the horizontal velocity of the moving granular front relative to the wave velocity. For all the different parameters considered here, the aspect ratio and the volume of the column, the diameter and density of the grains, and the height of the water, the granular collapse acts like a moving piston displacing the water. We also highlight that the density of the falling grains has a negligible influence on the wave amplitude, which suggests that the volume of grains entering the water is the relevant parameter in the wave generation.

Journal ArticleDOI
TL;DR: In this article, the physical mechanisms that drive and sustain flow-induced, transverse vibrations of cylinders are dissected by using a method to partition the fluid dynamic force on the cylinder into distinct, physically relevant components.
Abstract: The focus of this work is to dissect the physical mechanisms that drive and sustain flow-induced, transverse vibrations of cylinders. The influence of different mechanisms is quantified by using a method to partition the fluid dynamic force on the cylinder into distinct, physically relevant components. In conjunction with this force partitioning, calculations of the energy extracted by the oscillating body from the flow are used to make a direct connection between the phenomena responsible for force generation and their effect on driving flow-induced oscillations. These tools are demonstrated in a study of the effect of cylinder shape on flow-induced vibrations. Relatively small increases in cylinder aspect ratio are found to have a significant influence on the amplitude of oscillation, resulting in a large drop in oscillation amplitude at reduced velocities that correspond to the upper range of the synchronization regime. By mapping out the energy transfer between the fluid and structure as a function of aspect ratio, we identify the existence of a low-amplitude stationary state as the cause of the drop in amplitude. Partitioning the fluid dynamic forces on cylinders of varying aspect ratio then allows us to uncover the physical mechanisms behind the appearance of the underlying bifurcation. The analysis also suggests that while vortex shedding in the wake is necessary to initiate oscillations, it is the vorticity associated with the boundary layer over the cylinder that is responsible for the sustenance of flow-induced vibrations.

Journal ArticleDOI
TL;DR: In this article, the particle size and frictional properties of granular materials are combined with the Navier-Stokes equations to compute the petal-like segregation pattern that spontaneously develops in a square rotating drum.
Abstract: During the last fifteen years there has been a paradigm shift in the continuum modelling of granular materials; most notably with the development of rheological models, such as the -rheology, which is coupled to the gravity-driven segregation theory of Gray & Ancey (J. Fluid Mech., vol. 678, 2011, pp. 353–588). These advection–diffusion–segregation equations describe the evolving concentrations of the constituents, which then couple back to the variable viscosity in the incompressible Navier–Stokes equations. A novel feature of this approach is that any number of differently sized phases may be included, which may have disparate frictional properties. Further inclusion of an excess air phase, which segregates away from the granular material, then allows the complex evolution of the free surface to be captured simultaneously. Three primary coupling mechanisms are identified: (i) advection of the particle concentrations by the bulk velocity, (ii) feedback of the particle-size and/or frictional properties on the bulk flow field and (iii) influence of the shear rate, pressure, gravity, particle size and particle-size ratio on the locally evolving segregation and diffusion rates. The numerical method is extensively tested in one-way coupled computations, before the fully coupled model is compared with the discrete element method simulations of Tripathi & Khakhar (Phys. Fluids, vol. 23, 2011, 113302) and used to compute the petal-like segregation pattern that spontaneously develops in a square rotating drum.

Journal ArticleDOI
TL;DR: In this paper, a self-adaptive preferential flow control mechanism by using dispersed polymers is proposed, which is supported strongly by experimental and numerical evidence, where oil is displaced by dispersed polymer microsphere particles.
Abstract: Preferential flow that leads to non-uniform displacement, especially in heterogeneous porous media, is usually unwelcome in most practical processes. We propose a self-adaptive preferential flow control mechanism by using dispersed polymers, which is supported strongly by experimental and numerical evidence. Our experiments are performed on a microchip with heterogeneous porous structures where oil is displaced by dispersed polymer microsphere particles. Even though the size of the particles is much smaller than the pore-throat size, the diversion effect by the dispersed microspheres is still proved. Therefore, the plugging effect is not the major mechanism for preferential flow control by dispersed polymers. The mechanisms are further investigated by pore-scale modelling, which indicates that the dispersed polymers exhibit an adaption ability to pressure and resistance in the porous flow field. In such an intelligent way, the displacing fluid with dispersed polymers smartly controls the preferential flow by inducing pressure fluctuations, and demonstrates better performance in both efficiency and economic aspects than the traditional method by simply increasing the viscosity. These insights can be applied to improve techniques in the field, such as enhanced oil recovery and soil wetting.

Journal ArticleDOI
TL;DR: In this paper, the effect of riblets as a volume penalization in the Navier-Stokes equations was investigated and the statistical response of the eddy-viscosity-enhanced linearized equations was used to quantify the effects of background turbulence on mean velocity and skin-friction drag.
Abstract: Both experiments and direct numerical simulations have been used to demonstrate that riblets can reduce turbulent drag by as much as , but their systematic design remains an open challenge. In this paper we develop a model-based framework to quantify the effect of streamwise-aligned spanwise-periodic riblets on kinetic energy and skin-friction drag in turbulent channel flow. We model the effect of riblets as a volume penalization in the Navier–Stokes equations and use the statistical response of the eddy-viscosity-enhanced linearized equations to quantify the effect of background turbulence on the mean velocity and skin-friction drag. For triangular riblets, our simulation-free approach reliably predicts drag-reducing trends as well as mechanisms that lead to performance deterioration for large riblets. We investigate the effect of height and spacing on drag reduction and demonstrate a correlation between energy suppression and drag reduction for appropriately sized riblets. We also analyse the effect of riblets on drag-reduction mechanisms and turbulent flow structures including very large-scale motions. Our results demonstrate the utility of our approach in capturing the effect of riblets on turbulent flows using models that are tractable for analysis and optimization.

Journal ArticleDOI
TL;DR: In this paper, the authors present measurements of the shock wave pressures emitted by cavitating bubbles in water, under ultrasonic excitation produced by an immersed probe oscillating at 24 kHz.
Abstract: The application of cavitation-induced shock waves generated at low driving frequencies, known as power ultrasound, is essential for a wide range of fields, such as sonochemistry, lithotripsy, nanomaterials, emulsions and casting, to name but a few. In this paper, we present measurements of the shock wave pressures emitted by cavitating bubbles in water, under ultrasonic excitation produced by an immersed probe oscillating at 24 kHz. A broad-spectrum fibre-optic hydrophone calibrated in the range of 1–30 MHz was used for this purpose. Spectral analysis of the data reveals a consistent resonance peak at a very narrow range of frequencies (3.27–3.43 MHz). Results were confirmed using real-time analysis of high-speed recordings. By eliminating other possible sources, we propose that this new peak might be associated with shock wave emissions from collapsing bubbles. Spatial maps obtained by collating individual shock wave pressures highlight the effect of pressure shielding with increasing input power, attributed to a cloud of bubbles surrounding the probe. This work contributes towards the elucidation of the key properties of cavitation-driven shock waves and the underlying mechanisms, essential in controlling the effectiveness of the external processing conditions on various physical, chemical and biological systems.