scispace - formally typeset
Search or ask a question

Showing papers by "Tetsu Kinoshita published in 2013"


Journal ArticleDOI
TL;DR: The involvement of RdDM in imprinting supports the idea that sources of siRNAs such as transposons and de novo DNA methylation were recruited in a convergent manner in plants and mammals in the evolutionary process leading to selection of imprinted loci.
Abstract: In mammals and plants, parental genomic imprinting restricts the expression of specific loci to one parental allele. Imprinting in mammals relies on sex-dependent de novo deposition of DNA methylation during gametogenesis but a comparable mechanism was not shown in plants. Rather, paternal silencing by the maintenance DNA methyltransferase 1 (MET1) and maternal activation by the DNA demethylase DEMETER (DME) cause maternal expression. However, genome-wide studies suggested other DNA methylation-dependent imprinting mechanisms. Here, we show that de novo RNA-directed DNA methylation (RdDM) regulates imprinting at specific loci expressed in endosperm. RdDM in somatic tissues is required to silence expression of the paternal allele. By contrast, the repression of RdDM in female gametes participates with or without DME requirement in the activation of the maternal allele. The contrasted activity of DNA methylation between male and female gametes appears sufficient to prime imprinted maternal expression. After fertilization, MET1 maintains differential expression between the parental alleles. RdDM depends on small interfering RNAs (siRNAs). The involvement of RdDM in imprinting supports the idea that sources of siRNAs such as transposons and de novo DNA methylation were recruited in a convergent manner in plants and mammals in the evolutionary process leading to selection of imprinted loci.

83 citations


Journal ArticleDOI
TL;DR: It is proposed that the post-zygotic hybridization barrier in rice endosperm has two separable components, namely control of the timing of cellularization and control ofThe nuclear division rates in the syncytial stage of endOSperm development.
Abstract: Summary A post-zygotic hybridization barrier is often observed in the endosperm of seeds produced by interspecific or interploidy crosses. In Arabidopsis thaliana, for example, hybrid endosperm from both types of cross shows altered timing of cellularization and an altered rate of nuclear divisions. Therefore, it has been proposed that interspecific and interploidy crosses share common molecular mechanisms for establishment of an effective species barrier. However, these two types of hybridization barrier may be initiated by different intrinsic cues: the interspecific cross barrier arises after hybridization of genomes with differences in DNA sequences, while the interploidy cross barrier arises after hybridization of genomes with the same DNA sequences but differences in ploidy levels. In this study, we performed interploidy crosses to identify components of the post-hybridization barrier in the endosperm of rice. We performed an intra-cultivar cross of autotetraploid (4n) × diploid (2n) rice, and found precocious cellularization and a decreased rate of nuclear division in the syncytial endosperm. By contrast, seeds from the reciprocal cross showed delayed cellularization and an increased rate of nuclear division. This differential effect on nuclear division rates contrasts with the outcome of rice interspecific crosses, which were previously shown to have altered timing of cellularization without any change in nuclear division rates. Thus, we propose that the post-zygotic hybridization barrier in rice endosperm has two separable components, namely control of the timing of cellularization and control of the nuclear division rates in the syncytial stage of endosperm development.

61 citations


Journal ArticleDOI
TL;DR: The results indicate that A. thaliana NAR1 has various functions including transcriptional regulation in gametophytes and abiotic stress responses in vegetative tissues.
Abstract: Iron-sulfur proteins have iron-sulfur clusters as a prosthetic group and are responsible for various cellular processes, including general transcriptional regulation, photosynthesis and respiration. The cytosolic iron-sulfur assembly (CIA) pathway of yeast has been shown to be responsible for regulation of iron-sulfur cluster assembly in both the cytosol and the nucleus. However, little is known about the roles of this pathway in multicellular organisms. In a forward genetic screen, we identified an Arabidopsis thaliana mutant with impaired expression of the endosperm-specific gene Flowering Wageningen (FWA). To characterize this mutant, we carried out detailed phenotypic and genetic analyses during reproductive and vegetative development. The mutation affects NAR1, which encodes a homolog of a yeast CIA pathway component. Comparison of embryo development in nar1-3 and other A. thaliana mutants affected in the CIA pathway showed that the embryos aborted at a similar stage, suggesting that this pathway potentially functions in early seed development. Transcriptome analysis of homozygous viable nar1-4 seedlings showed transcriptional repression of a subset of genes involved in 'iron ion transport' and 'response to nitrate'. nar1-4 also exhibited resistance to the herbicide paraquat. Our results indicate that A. thaliana NAR1 has various functions including transcriptional regulation in gametophytes and abiotic stress responses in vegetative tissues.

18 citations


Journal ArticleDOI
TL;DR: The combination of biotron breeding system, early flowering habit and CMS will be of great value for screening candidate genes associated with QTL and for introducing useful QTL into elite cultivars.
Abstract: Quantitative trait locus (QTL) analyses have greatly enhanced our understanding of complex traits in rice (Oryza sativa). In parallel, the development of introgression lines has provided a powerful tool for elucidation of complicated genetic networks and identification of QTL. We recently developed a biotron breeding system that allows rapid indoor cultivation of rice plants. The system, however, has two relatively weak points in its application to marker-assisted breeding in rice: first, variation in generation times among cultivars; second, the low number of seeds produced by crosses. To compensate for these weaknesses, we propose utilizing cytoplasmic male sterility (CMS) and restorer (Rf) lines with a cv. Nipponbare genetic background. Through use of the Nipponbare genetic background, rice generation times of 2 months can be achieved regardless of any differences in the genetic background of the donor rice plant. This CMS–Rf system confers a high yield of hybrid seeds, avoids the need for emasculation and precludes accidental crosses. Our results demonstrate that this new methodology can markedly accelerate many different aspects of rice research, especially in functional genomics. The combination of biotron breeding system, early flowering habit and CMS will be of great value for screening candidate genes associated with QTL and for introducing useful QTL into elite cultivars.

2 citations