scispace - formally typeset
Search or ask a question

Showing papers by "Ulrike Holzgrabe published in 2023"


Journal ArticleDOI
TL;DR: In this article , rapamycin-derived Mip inhibitors have been designed that may be able to combine two binding modes to inhibit the Mip protein of Burkholderia pseudomallei (BpMip).
Abstract: The macrophage infectivity potentiator (Mip) protein is a promising target for developing new drugs to combat antimicrobial resistance. New rapamycin-derived Mip inhibitors have been designed that may be able to combine two binding modes to inhibit the Mip protein of Burkholderia pseudomallei (BpMip). These novel compounds are characterized by an additional substituent in the middle chain linking the lateral pyridine to the pipecoline moiety, constituting different stereoisomers. These compounds demonstrated high affinity for the BpMip protein in the nanomolar range and high anti-enzymatic activity and ultimately resulted in significantly reduced cytotoxicity of B. pseudomallei in macrophages. They also displayed strong anti-enzymatic activity against the Mip proteins of Neisseria meningitidis and Neisseria gonorrhoeae and substantially improved the ability of macrophages to kill the bacteria. Hence, the new Mip inhibitors are promising, non-cytotoxic candidates for further testing against a broad spectrum of pathogens and infectious diseases.

1 citations


Journal ArticleDOI
01 Mar 2023
TL;DR: In this article , a fluorescence polarization assay (FPA) was developed to enable the screening and effective development of macrophage infectivity potentiator (Mip) inhibitors, and a fluorescent probe was prepared, derived from previous pipecolic scaffold Mip inhibitors labeled with fluorescein.
Abstract: The macrophage infectivity potentiator (Mip) protein belongs to the immunophilin superfamily. This class of enzymes catalyzes the interconversion between the cis and trans configuration of proline-containing peptide bonds. Mip has been shown to be important for the virulence of a wide range of pathogenic microorganisms, including the Gram-negative bacterium Burkholderia pseudomallei. Small molecules derived from the natural product rapamycin, lacking its immunosuppression-inducing moiety, inhibit Mip's peptidyl-prolyl cis-trans isomerase (PPIase) activity and lead to a reduction in pathogen load in vitro. Here, a fluorescence polarization assay (FPA) to enable the screening and effective development of BpMip inhibitors was established. A fluorescent probe was prepared, derived from previous pipecolic scaffold Mip inhibitors labeled with fluorescein. This probe showed moderate affinity for BpMip and enabled a highly robust FPA suitable for screening large compound libraries with medium- to high-throughput (Z factor ∼ 0.89) to identify potent new inhibitors. The FPA results are consistent with data from the protease-coupled PPIase assay. Analysis of the temperature dependence of the probe's binding highlighted that BpMip's ligand binding is driven by enthalpic rather than entropic effects. This has considerable consequences for the use of low-temperature kinetic assays.

1 citations


Journal ArticleDOI
TL;DR: In this paper , the formation, toxicity, and mitigation of NDSRISs were discussed. But the N-nitrosodialkylamines found were neither so-called (structurally) related substances, nor residual solvents or heavy metals; hence they were not limited by a compendial test, but by the ICH guideline M7 of mutagenic impurities.

Journal ArticleDOI
TL;DR: In this article , forced mechanochemical degradation of platelet inhibitor drug products was used to predict degradation profiles at early stages of the development of new drugs, making the entire process very time-consuming and costly.
Abstract: The long-term stability of an active-pharmaceutical ingredient and its drug products plays an important role in the licensing process of new pharmaceuticals and for the application of the drug at the patient. It is, however, difficult to predict degradation profiles at early stages of the development of new drugs, making the entire process very time-consuming and costly. Forced mechanochemical degradation under controlled conditions can be used to realistically model long-term degradation processes naturally occurring in drug products, avoiding the use of solvents, thus excluding irrelevant solution-based degradation pathways. We present the forced mechanochemical oxidative degradation of three platelet inhibitor drug products, where the drug products contain thienopyridine. Model studies using clopidogrel hydrogen sulfate (CLP) and its drug formulation Plavix show that the controlled addition of excipients does not affect the nature of the main degradants. Experiments using drug products Ticlopidin-neuraxpharm and Efient show that significant degradation occurs after short reaction times of only 15 min. These results highlight the potential of mechanochemistry for the study of degradation processes of small molecules relevant to the prediction of degradation profiles during the development of new drugs. Furthermore, these data provide exciting insights into the role of mechanochemistry for chemical synthesis in general.

Journal ArticleDOI
TL;DR: In this paper , the authors established a selective and sensitive quantification method for DAP upon growth of a DAP resistant Mammaliicoccus sciuri strain in Mueller-Hinton medium using liquid chromatography with gradient elution coupled to mass spectrometry (LC-MS/MS) using daptomycin-d5 as internal standard.

Journal ArticleDOI
TL;DR: In this paper , the impact of mechanical stress on the formation of subvisible/nanoparticles in monoclonal antibody infusions was investigated by dynamic light scattering and flow imaging microscopy, and different mAb-i concentrations were subjected to vibrational orbital shaking and stored at 2-8°C up to 35 days.
Abstract: Monoclonal antibody infusions (mAb-i) are administered for the treatment of various diseases. They are often transported over long distances from the compounding site to the site of administration. However, transport studies are typically carried out with the original drug product but not with compounded mAb-i. To address this gap, the impact of mechanical stress on the formation of subvisible/nanoparticles in mAb-i was investigated by dynamic light scattering and flow imaging microscopy. Different mAb-i concentrations were subjected to vibrational orbital shaking and stored at 2-8°C up to 35 days. The screening revealed that pembrolizumab and bevacizumab infusions show the highest propensity for particle formation. Especially bevacizumab at low concentrations exhibited an increase in particle formation. Because of the unknown health risks associated with the long-term application of subvisible particles (SVPs)/nanoparticles in infusion bags, stability studies carried out in the frame of licensing application procedures should also focus on SVP formation in mAb-i. In general, pharmacists should minimize the time of storage and mechanical stress during transport, especially in the case of low-concentrated mAb-i. Moreover, if siliconized syringes are used, they should be washed once with saline solution to minimize particle entry.

Journal ArticleDOI
TL;DR: In this article , a series of glucovanillin derivatives and explore their antibacterial potentials were generated using synthetic approaches, and the optimum antibacterial activities were exhibited by those containing 2,4- and 3,5-dichlorophenylamino group coupled to a glucovillin moiety.

Journal ArticleDOI
TL;DR: In this paper , the synthesis of bitopic ligands, 12Cn and 13Cn, and their pharmacological investigation at the M1, M2, M4, and M5 FRET-based receptor sensors were reported.
Abstract: In the last few years, fluorescence resonance energy transfer (FRET) receptor sensors have contributed to the understanding of GPCR ligand binding and functional activation. FRET sensors based on muscarinic acetylcholine receptors (mAChRs) have been employed to study dual-steric ligands, allowing for the detection of different kinetics and distinguishing between partial, full, and super agonism. Herein, we report the synthesis of the two series of bitopic ligands, 12-Cn and 13-Cn, and their pharmacological investigation at the M1, M2, M4, and M5 FRET-based receptor sensors. The hybrids were prepared by merging the pharmacophoric moieties of the M1/M4-preferring orthosteric agonist Xanomeline 10 and the M1-selective positive allosteric modulator 77-LH-28-1 (1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone) 11. The two pharmacophores were connected through alkylene chains of different lengths (C3, C5, C7, and C9). Analyzing the FRET responses, the tertiary amine compounds 12-C5, 12-C7, and 12-C9 evidenced a selective activation of M1 mAChRs, while the methyl tetrahydropyridinium salts 13-C5, 13-C7, and 13-C9 showed a degree of selectivity for M1 and M4 mAChRs. Moreover, whereas hybrids 12-Cn showed an almost linear response at the M1 subtype, hybrids 13-Cn evidenced a bell-shaped activation response. This different activation pattern suggests that the positive charge anchoring the compound 13-Cn to the orthosteric site ensues a degree of receptor activation depending on the linker length, which induces a graded conformational interference with the binding pocket closure. These bitopic derivatives represent novel pharmacological tools for a better understanding of ligand-receptor interactions at a molecular level.

Journal ArticleDOI
TL;DR: In this paper , the authors proposed a robust liquid chromatography method with charged aerosol detection for the analysis of polysorbate 80 (PS80) and magnesium stearate.
Abstract: An alternative to the time-consuming and error-prone pharmacopoeial gas chromatography method for the analysis of fatty acids (FAs) is urgently needed. The objective was therefore to propose a robust liquid chromatography method with charged aerosol detection for the analysis of polysorbate 80 (PS80) and magnesium stearate. FAs with different numbers of carbon atoms in the chain necessitated the use of a gradient method with a Hypersil Gold C18 column and acetonitrile as organic modifier. The risk-based Analytical Quality by Design approach was applied to define the Method Operable Design Region (MODR). Formic acid concentration, initial and final percentages of acetonitrile, gradient elution time, column temperature, and mobile phase flow rate were identified as critical method parameters (CMPs). The initial and final percentages of acetonitrile were fixed while the remaining CMPs were fine-tuned using response surface methodology. Critical method attributes included the baseline separation of adjacent peaks (α-linolenic and myristic acid, and oleic and petroselinic acid) and the retention factor of the last compound eluted, stearic acid. The MODR was calculated by Monte Carlo simulations with a probability equal or greater than 90%. Finally, the column temperature was set at 33 °C, the flow rate was 0.575 mL/min, and acetonitrile linearly increased from 70 to 80% (v/v) within 14.2 min.

Journal ArticleDOI
TL;DR: In this article , pipecolic acid derived compounds, SF235 and AN296, demonstrate inhibitory activities against C. burnetii in both HeLa and THP-1 cells.
Abstract: Coxiella burnetii is a Gram-negative intracellular pathogen that causes the debilitating disease Q fever, which affects both animals and humans. The only available human vaccine, Q-Vax, is effective but has a high risk of severe adverse reactions, limiting its use as a countermeasure to contain outbreaks. Therefore, it is essential to identify new drug targets to treat this infection. Macrophage infectivity potentiator (Mip) proteins catalyse the folding of proline-containing proteins through their peptidyl prolyl cis-trans isomerase (PPIase) activity and have been shown to play an important role in the virulence of several pathogenic bacteria. To date the role of the Mip protein in C. burnetii pathogenesis has not been investigated. This study demonstrates that CbMip is likely to be an essential protein in C. burnetii. The pipecolic acid derived compounds, SF235 and AN296, which have shown utility in targeting other Mip proteins from pathogenic bacteria, demonstrate inhibitory activities against CbMip. These compounds were found to significantly inhibit intracellular replication of C. burnetii in both HeLa and THP-1 cells. Furthermore, SF235 and AN296 were also found to exhibit antibiotic properties against both the virulent (Phase I) and avirulent (Phase II) forms of C. burnetii Nine Mile Strain in axenic culture. Comparative proteomics, in the presence of AN296, revealed alterations in stress responses with H2O2 sensitivity assays validating that Mip inhibition increases the sensitivity of C. burnetii to oxidative stress. In addition, SF235 and AN296 were effective in vivo and significantly improved the survival of Galleria mellonella infected with C. burnetii. These results suggest that unlike in other bacteria, Mip in C. burnetii is required for replication and that the development of more potent inhibitors against CbMip is warranted and offer potential as novel therapeutics against this pathogen.