scispace - formally typeset
Search or ask a question

Showing papers by "Umezuruike Linus Opara published in 2016"


Journal ArticleDOI
TL;DR: The freeze drying method had higher total phenolic, tannin and flavonoid concentration therefore can be explored as a feasible method for processing pomegranate peel to ensure retention of the maximum amount of their naturally occurring bioactive compounds.
Abstract: The use of pomegranate peel is highly associated with its rich phenolic concentration. Series of drying methods are recommended since bioactive compounds are highly sensitive to thermal degradation. The study was conducted to evaluate the effects of drying on the bioactive compounds, antioxidant as well as antibacterial and antityrosinase activities of pomegranate peel. Dried pomegranate peels with the initial moisture content of 70.30 % wet basis were prepared by freeze and oven drying at 40, 50 and 60 °C. Difference in CIE-LAB, chroma (C*) and hue angle (h°) were determined using colorimeter. Individual polyphenol retention was determined using LC-MS and LC-MSE while total phenolics concentration (TPC), total flavonoid concentration (TFC), total tannins concentration (TTC) and vitamin C concentration were measured using colorimetric methods. The antioxidant activity was measured by radical scavenging activity (RSA) and ferric reducing antioxidant power (FRAP). Furthermore, the antibacterial activity of methanolic peel extracts were tested on Gram negative (Escherichia coli and Klebsiella pneumonia) and Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis) using the in vitro microdilution assays. Tyrosinase enzyme inhibition was investigated against monophenolase (tyrosine) and diphenolase (DOPA), with arbutin as positive controls. Oven drying at 60 °C resulted in high punicalin concentration (888.04 ± 141.03 mg CE/kg dried matter) along with poor red coloration (high hue angle). Freeze dried peel contained higher catechin concentration (674.51 mg/kg drying matter) + catechin and –epicatechin (70.56 mg/kg drying matter) compared to oven dried peel. Furthermore, freeze dried peel had the highest total phenolic, tannin and flavonoid concentrations compared to oven dried peel over the temperature range studied. High concentration of vitamin C (31.19 μg AAE/g dried matter) was observed in the oven dried (40 °C) pomegranate peel. Drying at 50 °C showed the highest inhibitory activity with the MIC values of 0.10 mg/ml against Gram positive (Staphylococcus aureus and Bacillus subtili. Likewise, the extracts dried at 50 °C showed potent inhibitory activity concentration (22.95 mg/ml) against monophenolase. Principal component analysis showed that the peel colour characteristics and bioactive compounds isolated the investigated drying method. The freeze and oven dried peel extracts exhibited a significant antibacterial and antioxidant activities. The freeze drying method had higher total phenolic, tannin and flavonoid concentration therefore can be explored as a feasible method for processing pomegranate peel to ensure retention of the maximum amount of their naturally occurring bioactive compounds. Not relevant for this study.

126 citations


Journal ArticleDOI
TL;DR: In this paper, a simulated transport study was used to assess the susceptibility of apple fruit inside two ventilated corrugated paperboard (VCP) packages (MK4 and MK6) commonly used in fresh produce industry for packing apple fruit.

72 citations


Journal ArticleDOI
TL;DR: In this article, a review examines the various mathematical approaches to the design of modified atmosphere system for handling and storage of fruit and vegetables, including the interaction between fresh produce physiological process, packaging and environmental conditions, which in turn influence produce shelf life and quality.

71 citations


Journal ArticleDOI
TL;DR: In this paper, a multi-parameter evaluation process for ventilated fruit packaging is presented, where the authors evaluate cooling rate and cooling uniformity, airflow resistance and energy efficiency, and evaluate the impact of internal trays and four vent hole designs.
Abstract: Forced-air cooling (FAC) efficiency of fruit packed in ventilated cartons can be considerably improved by revising vent hole design and tailoring these openings according to the internal packaging used. Current vent hole designs for fruit cartons, however, often result from trials and errors or are developed in order to improve a specific package functionality, such as fruit cooling rate. This study presents a novel multiparameter evaluation process for ventilated fruit packaging. This multi-parameter strategy evaluates cooling rate and cooling uniformity, airflow resistance and energy efficiency. Computational fluid dynamics is used to evaluate the impact of internal trays and four vent hole designs. One of the designs investigated is currently used in commercial export of apples, while the other three are new configurations proposed to improve fruit cooling efficiency. Results showed that the addition of trays to the existing commercially used Standard Vent hole design increased ventilation energy consumption by 31 % compared to cartons without trays, but in the two newly proposed carton designs (Altvent and Multivent), the energy usage was reduced by 27 and 26 %, respectively, as airflow was distributed more evenly between the five fruit layers. The use of the new vent hole designs (Altvent and Multivent) compared to the Standard Vent design, also considerably improved cooling uniformity and energy efficiency during FAC, reducing cooling heterogeneity by 79 and 51 %, as well as energy consumption by 48 and 7 %, when packed with and without trays, respectively. By simultaneous evaluation of multiple parameters, this analysis approach thus unveiled the benefits and disadvantages of the new ventilated carton designs and can be used to further improve vent hole designs for specific cold chains.

61 citations


Journal ArticleDOI
TL;DR: Findings from this study showed that concentration of pomegranate polyphenols and the antioxidant capacity during in vitro gastro-intestinal digestion may not reflect the pre-digested phenolic concentration.
Abstract: Co-products obtained from pomegranate juice processing contain high levels of polyphenols with potential high added values. From value-addition viewpoint, the aim of this study was to evaluate the stability of polyphenolic concentrations in pomegranate fruit co-products in different solvent extracts and assess the effect on the total antioxidant capacity using the FRAP, DPPH˙ and ABTS+ assays during simulated in vitro digestion. Pomegranate juice, marc and peel were extracted in water, 50 % ethanol (50%EtOH) and absolute ethanol (100%EtOH) and analysed for total phenolic concentration (TPC), total flavonoids concentration (TFC) and total antioxidant capacity in DPPH˙, ABTS+ and FRAP assays before and after in vitro digestion. Total phenolic concentration (TPC) and total flavonoid concentration (TFC) were in the order of peel > marc > juice throughout the in vitro digestion irrespective of the extraction solvents used. However, 50 % ethanol extracted 1.1 to 12-fold more polyphenols than water and ethanol solvents depending on co-products. TPC and TFC increased significantly in gastric digests. In contrast, after the duodenal phase of in vitro digestion, polyphenolic concentrations decreased significantly (p < 0.05) compared to those obtained in gastric digests. Undigested samples and gastric digests showed strong and positive relationships between polyphenols and the antioxidant activities measured in DPPH, ABTS+ and FRAP assays, with correlation coefficients (r2) ranging between 0.930–0.990. In addition, the relationships between polyphenols (TPC and TFC) and radical cation scavenging activity in ABTS+ were moderately positive in duodenal digests. Findings from this study showed that concentration of pomegranate polyphenols and the antioxidant capacity during in vitro gastro-intestinal digestion may not reflect the pre-digested phenolic concentration. Thus, this study highlights the need to provide biologically relevant information on antioxidants by providing data reflecting their stability and activity after in vitro digestion.

58 citations


Journal ArticleDOI
TL;DR: A validated finite element analysis (FEA) model capable of predicting the compressive strength of two commonly used VCP packages is developed; the MK4 with higher length-to-height ratio and vent area compared to the MK6 as mentioned in this paper.

57 citations


Journal ArticleDOI
TL;DR: The importance and types of disease control and management strategies for pomegranate fruit and fruit tree are critically evaluated and a critical guide to all the role players along the pome Granatum value chain is provided.

56 citations


Journal ArticleDOI
TL;DR: In this article, chemical, volatile composition and bioactive compounds extracted from different fruit fractions of pomegranate (Punica granatum L.) cv. were investigated.

52 citations


Journal ArticleDOI
TL;DR: Knowledge on the impact of fruit maturity and agro-climatic locations (with different altitudes) on biochemical and aroma volatile attributes of pomegranate fruit provides a useful guide for selecting farm location towards improving fruit quality and the maturity stage best for juice processing.
Abstract: BACKGROUND This study investigated the changes in chemical attributes of pomegranate fruit such as total soluble solids (TSS), titratable acidity (TA), TSS/TA ratio, pH, individual compounds (organic acids and sugars) and volatile composition as affected by fruit maturity status and growing location (Kakamas, Koedoeshoek and Worcester in South Africa). Headspace solid phase microextraction coupled with gas chromatography/mass spectrometry was used for volatile analysis. RESULTS A significant increase in TSS from 14.7 ± 0.6 to 17.5 ± 0.6 °Brix was observed with advancement in fruit maturity, while TA decreased from 2.1 ± 0.7 to 1.1 ± 0.3 g citric acid per 100 mL across all agro-climatic locations investigated. Fruit TSS/TA ratio and pH increased from 7.8 ± 2.6 to 16.6 ± 2.8 and from 3.3 ± 0.1 to 3.6 ± 0.2 respectively during fruit maturation across all agro-climatic locations. Fructose and glucose concentrations increased continually with fruit maturity from 69.4 ± 4.9 to 91.1 ± 4.9 g kg−1 and from 57.1 ± 4.7 to 84.3 ± 5.2 g kg−1 respectively. A total of 13 volatile compounds were detected and identified, belonging to five chemical classes. The most abundant volatile in unripe and mid-ripe fruit was 1-hexanol, while 3-hexen-1-ol was highest at commercial maturity. CONCLUSION Knowledge on the impact of fruit maturity and agro-climatic locations (with different altitudes) on biochemical and aroma volatile attributes of pomegranate fruit provides a useful guide for selecting farm location towards improving fruit quality and the maturity stage best for juice processing. © 2015 Society of Chemical Industry

47 citations


Journal ArticleDOI
TL;DR: In this article, X-ray computed tomography (CT) was used as a non-destructive technique to characterise and quantify the internal structure of pomegranate fruit (cv. Wonderful).

45 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the impact bruise damage susceptibility of apples packed inside two ventilated carton designs (one with fruit on tray layers and the other with fruit in retail polyethylene plastic bags).

Journal ArticleDOI
TL;DR: An image processing algorithm is proposed to detect physiological disorders granulation and endoxerosis on X-ray projection images and classify samples as being affected or not, avoiding the need for labour-intensive destructive sampling and allowing for non-destructive inspection of all fruits while preventing losses due to destructive sampling.

Journal ArticleDOI
TL;DR: In this paper, pomegranate fruit were packed in ventilated carton with polyliner (referred to as passive modified atmosphere packaging, MAP), individual shrink wrap and open top carton (control) andstored under 7.± 0.5°C and 92.± 2% RH for 4 months.

Journal ArticleDOI
TL;DR: In this paper, a hyperspectral interactance imaging system was used to non-destructively estimate blueberry mechanical properties, including texture profile analysis (TPA) and four puncture analysis (PA) parameters.

Journal Article
TL;DR: In this article, the authors evaluated the stability of polyphenolic concentrations in pomegranate fruit co-products in different solvent extracts and assessed the effect on the total antioxidant capacity using the FRAP, DPPH˙ and ABTS+ assays during simulated in vitro digestion.
Abstract: Co-products obtained from pomegranate juice processing contain high levels of polyphenols with potential high added values. From value-addition viewpoint, the aim of this study was to evaluate the stability of polyphenolic concentrations in pomegranate fruit co-products in different solvent extracts and assess the effect on the total antioxidant capacity using the FRAP, DPPH˙ and ABTS+ assays during simulated in vitro digestion. Pomegranate juice, marc and peel were extracted in water, 50 % ethanol (50%EtOH) and absolute ethanol (100%EtOH) and analysed for total phenolic concentration (TPC), total flavonoids concentration (TFC) and total antioxidant capacity in DPPH˙, ABTS+ and FRAP assays before and after in vitro digestion. Total phenolic concentration (TPC) and total flavonoid concentration (TFC) were in the order of peel > marc > juice throughout the in vitro digestion irrespective of the extraction solvents used. However, 50 % ethanol extracted 1.1 to 12-fold more polyphenols than water and ethanol solvents depending on co-products. TPC and TFC increased significantly in gastric digests. In contrast, after the duodenal phase of in vitro digestion, polyphenolic concentrations decreased significantly (p < 0.05) compared to those obtained in gastric digests. Undigested samples and gastric digests showed strong and positive relationships between polyphenols and the antioxidant activities measured in DPPH, ABTS+ and FRAP assays, with correlation coefficients (r2) ranging between 0.930–0.990. In addition, the relationships between polyphenols (TPC and TFC) and radical cation scavenging activity in ABTS+ were moderately positive in duodenal digests. Findings from this study showed that concentration of pomegranate polyphenols and the antioxidant capacity during in vitro gastro-intestinal digestion may not reflect the pre-digested phenolic concentration. Thus, this study highlights the need to provide biologically relevant information on antioxidants by providing data reflecting their stability and activity after in vitro digestion.

Journal ArticleDOI
TL;DR: Rapid methods for extracting and quantifying phenolic compounds in citrus rinds are developed by comparing three extraction solvent combinations and methanol:H2O:HCl was efficient in optimum extraction of phenolic acids.
Abstract: Conventional methods for extracting and quantifying phenolic compounds in citrus rinds are time consuming. Rapid methods for extracting and quantifying phenolic compounds were developed by comparing three extraction solvent combinations (80:20 v/v ethanol:H2O; 70:29.5:0.5 v/v/v methanol:H2O:HCl; and 50:50 v/v dimethyl sulfoxide (DMSO):methanol) for effectiveness. Freeze-dried, rind powder was extracted in an ultrasonic water bath at 35°C for 10, 20, and 30 min. Phenolic compound quantification was done with a high-performance liquid chromatography (HPLC) equipped with diode array detector. Extracting with methanol:H2O:HCl for 30 min resulted in the optimum yield of targeted phenolic acids. Seven phenolic acids and three flavanone glycosides (FGs) were quantified. The dominant phenolic compound was hesperidin, with concentrations ranging from 7500 to 32,000 μg/g DW. The highest yield of FGs was observed in samples extracted, using DMSO:methanol for 10 min. Compared to other extraction methods, methanol:H2O:HCl was efficient in optimum extraction of phenolic acids. The limit of detection and quantification for all analytes were small, ranging from 1.35 to 5.02 and 4.51 to 16.72 μg/g DW, respectively, demonstrating HPLC quantification method sensitivity. The extraction and quantification methods developed in this study are faster and more efficient. Where speed and effectiveness are required, these methods are recommended.

Journal ArticleDOI
22 Jun 2016
TL;DR: In this article, the effects of cold storage (−0.5∘C at 90% RH) on the mechanical performance of ventilated packaging used for handling pome fruit were investigated.
Abstract: Abstract This study investigated the effects of cold storage (−0.5∘C at 90% RH) on the mechanical performance of ‘MK4’ ventilated packaging used for handling pome fruit. The packages were stored over a period of 43 days. Compression strength of packages was measured by Lansmont squeezer compression testing machine on day 2, 4, 6 and 8 and then weekly over 6 weeks. The effect of storage duration on package moisture content and compression strength was also examined. Maximum compressive strength was reduced from 7351 to 3872 N after 2 days of storage. The package compressive strength decreased with an increase in moisture content. Average compression strength was observed to decrease by 618 N per one percent increase in moisture content. Pseudo first order kinetic model could satisfactorily analyse the adsorption of water by corrugated package with coefficient of determination of 0.9816 and standard error of 0.2554. Relationship between package compression strength with change in moisture during storage showed good correlation.

Journal ArticleDOI
TL;DR: In this article, a commercial microfocus X-ray computed tomography (μCT) system was used to generate two-dimensional (2D) radioscopic images which were reconstructed into three dimensional (3-D) images.

Journal ArticleDOI
TL;DR: In this paper, the authors quantify the incidence of postharvest losses of cabbage at retail purchase and during consumer simulated storage and find that these losses were equivalent to over R10 million (∼US$1 million) per annum, while the equivalent wasted fresh water was estimated to be sufficient to meet the needs of over 217,000 per year.
Abstract: Purpose – The purpose of this paper is to quantify the incidence of postharvest losses of cabbage at retail purchase and during consumer simulated storage. Design/methodology/approach – Physical losses, changes in quality and nutritional value were determined using produce from three different retail outlets in South Africa. Economic losses and the environment impact associated with postharvest losses of cabbage were estimated. Findings – After seven days in storage, high incidence of postharvest losses occurred, ranging from 12 per cent under cold storage to 46 per cent under ambient conditions. These losses were equivalent to over R10 million (∼US$1 million) per annum, while the equivalent wasted fresh water was estimated to be sufficient to meet the needs of over 217,000 per annum. Research limitations/implications – Study was only conducted in one town and to get the real impact of the losses the research should cover a wider coverage area. Originality/value – Cabbage is one of the most widely consume...

Journal ArticleDOI
TL;DR: In this article, the metabolic changes in Granny Smith apples with different severities of superficial scald were studied for 12 weeks and fruit were stored in normal refrigerated air (0°C, 95% RH).
Abstract: To study the metabolic changes in ‘Granny Smith’ apples with different severities of superficial scald, fruit were stored in normal refrigerated air (0°C, 95% RH) for 12 weeks followed by 7 d shelf-life under room conditions (20°C, 65% RH). Fruit were graded to five groups based on scald severity and analysed for ethylene, α-farnesene and 6-methyl-5-hepten-2-one (MHO) levels. Reactive oxygen species (ROS) were measured by confocal laser-scanning microscopy on apple peel treated with fluorescent probe 2’,7’-dichlorodihydrofluorescein diacetate. Ethylene production rate, α-farnesene and MHO contents and ROS intensity increased with increasing scald severity but declined in severely scalded fruit. Malondialdehyde (MDA) concentration in fruit peel, a measure of membrane damage, increased linearly (R=0.891) with increase in scald severity. Discriminant analysis was used to classify fruit by scald severity on the basis of metabolites accumulated. The stepwise model indicated that three attributes (ROS, ethylene production and MDA) contributed significantly (R 2 ≥0.5) to the separation of the five scald severity indexes, with ROS having the highest contribution (partial R² =0.961; p<0.0001), followed by ethylene (R 2 =0.718; p<0.0001) and MDA (R 2 =0.578; p<0.0001).



Journal ArticleDOI
TL;DR: The influence of packaging materials (plastic bucket, low density polyethylene [LDPE] bags and paper bags) on quality attributes of the flour of 2 cassava cultivars stored at 23 ± 2 °C and 60% relative humidity were investigated.
Abstract: The influence of packaging materials (plastic bucket, low density polyethylene [LDPE] bags and paper bags) on quality attributes of the flour of 2 cassava cultivars (TME 419 and UMUCASS 36) stored at 23 ± 2 °C and 60% relative humidity (RH) were investigated for 12 wk. Cassava flour from each package type was evaluated for proximate composition, physicochemical properties and microbial growth at 4-wk intervals. Total color difference (∆E) of both cassava flour cultivars increased with storage duration. Flour packed in plastic bucket had the lowest change in color (3.2 ± 0.42) for cv. "TME 419ˮ and (4.1 ± 0.87) for cv. "UMUCASS 36ˮ at the end of week 12. Total carotenoid decreased across all treatment, and after the 12 wk storage, the highest total carotenoid retention (1.7 ± 0.02 and 2.0 ± 0.05 μg/mL) was observed in flour packed in plastic bucket. However, cassava flour in paper bag had the lowest microbial count of 3.4 ± 0.03 and 3.4 ± 0.08 log cfu/g for total aerobic mesophilic bacteria and fungi, respectively.


Journal ArticleDOI
TL;DR: In this paper, a powder dispersion tube was meshed in three different types, namely, tetrahedral, unstructured hexahedral and prismatic-tetrahedral hybrid meshes.
Abstract: OBJECTIVE To investigate the influence of mesh type on numerical simulating the dispersion performance of micro-powders through a home-made tube. METHODS With the computational fluid dynamics (CFD) method, a powder dispersion tube was meshed in three different types, namely, tetrahedral, unstructured hexahedral and prismatic-tetrahedral hybrid meshes. The inner flow field and the kinetic characteristics of the particles were investigated. Results of the numerical simulation were compared with literature evidences. RESULTS The results showed that using tetrahedral mesh had the highest computational efficiency, while employing the unstructured hexahedral mesh obtained more accurate outlet velocity. The simulation results of the inner flow field and the kinetic characteristics of the particles were slightly different among the three mesh types. The calculated particle velocity using the tetrahedral mesh had the best correlation with the changing trend of the fine particle mass in the first 4 stages of the new generation impactor (NGI) (R2 = 0.91 and 0.89 for powder A and B, respectively). Conclusions Mesh type affected computational time, accuracy of simulation results and the prediction abilities of fine particle deposition.