scispace - formally typeset
Search or ask a question
Author

Vijay Kumar

Bio: Vijay Kumar is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Robot & Mobile robot. The author has an hindex of 99, co-authored 780 publications receiving 42086 citations. Previous affiliations of Vijay Kumar include Arizona State University & Virginia Tech.


Papers
More filters
Proceedings ArticleDOI
09 May 2011
TL;DR: An algorithm is developed that enables the real-time generation of optimal trajectories through a sequence of 3-D positions and yaw angles, while ensuring safe passage through specified corridors and satisfying constraints on velocities, accelerations and inputs.
Abstract: We address the controller design and the trajectory generation for a quadrotor maneuvering in three dimensions in a tightly constrained setting typical of indoor environments. In such settings, it is necessary to allow for significant excursions of the attitude from the hover state and small angle approximations cannot be justified for the roll and pitch. We develop an algorithm that enables the real-time generation of optimal trajectories through a sequence of 3-D positions and yaw angles, while ensuring safe passage through specified corridors and satisfying constraints on velocities, accelerations and inputs. A nonlinear controller ensures the faithful tracking of these trajectories. Experimental results illustrate the application of the method to fast motion (5–10 body lengths/second) in three-dimensional slalom courses.

1,875 citations

Journal ArticleDOI
TL;DR: In this article, a tutorial for modeling, estimation, and control for multi-rotor aerial vehicles that includes the common four-rotors or quadrotors case is presented.
Abstract: This article provides a tutorial introduction to modeling, estimation, and control for multirotor aerial vehicles that includes the common four-rotor or quadrotor case.

1,241 citations

Journal ArticleDOI
01 Dec 2001
TL;DR: This paper addresses the control of a team of nonholonomic mobile robots navigating in a terrain with obstacles while maintaining a desired formation and changing formations when required, using graph theory.
Abstract: This paper addresses the control of a team of nonholonomic mobile robots navigating in a terrain with obstacles while maintaining a desired formation and changing formations when required, using graph theory. We model the team as a triple, (g, r, H), consisting of a group element g that describes the gross position of the lead robot, a set of shape variables r that describe the relative positions of robots, and a control graph H that describes the behaviors of the robots in the formation. Our framework enables the representation and enumeration of possible control graphs and the coordination of transitions between any two formations.

1,175 citations

Proceedings ArticleDOI
24 Apr 2000
TL;DR: This paper surveys the field of robotic grasping and the work that has been done in this area over the last two decades, with a slight bias toward the development of the theoretical framework and analytical results.
Abstract: In this paper, we survey the field of robotic grasping and the work that has been done in this area over the last two decades, with a slight bias toward the development of the theoretical framework and analytical results in this area.

1,080 citations

Journal ArticleDOI
10 Dec 2002
TL;DR: In this article, the authors describe a framework for cooperative control of a group of nonholonomic mobile robots that allows them to build complex systems from simple controllers and estimators, and guarantee stability and convergence in a wide range of tasks.
Abstract: We describe a framework for cooperative control of a group of nonholonomic mobile robots that allows us to build complex systems from simple controllers and estimators. The resultant modular approach is attractive because of the potential for reusability. Our approach to composition also guarantees stability and convergence in a wide range of tasks. There are two key features in our approach: 1) a paradigm for switching between simple decentralized controllers that allows for changes in formation; 2) the use of information from a single type of sensor, an omnidirectional camera, for all our controllers. We describe estimators that abstract the sensory information at different levels, enabling both decentralized and centralized cooperative control. Our results include numerical simulations and experiments using a testbed consisting of three nonholonomic robots.

1,068 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: A distinctive feature of this work is to address consensus problems for networks with directed information flow by establishing a direct connection between the algebraic connectivity of the network and the performance of a linear consensus protocol.
Abstract: In this paper, we discuss consensus problems for networks of dynamic agents with fixed and switching topologies. We analyze three cases: 1) directed networks with fixed topology; 2) directed networks with switching topology; and 3) undirected networks with communication time-delays and fixed topology. We introduce two consensus protocols for networks with and without time-delays and provide a convergence analysis in all three cases. We establish a direct connection between the algebraic connectivity (or Fiedler eigenvalue) of the network and the performance (or negotiation speed) of a linear consensus protocol. This required the generalization of the notion of algebraic connectivity of undirected graphs to digraphs. It turns out that balanced digraphs play a key role in addressing average-consensus problems. We introduce disagreement functions for convergence analysis of consensus protocols. A disagreement function is a Lyapunov function for the disagreement network dynamics. We proposed a simple disagreement function that is a common Lyapunov function for the disagreement dynamics of a directed network with switching topology. A distinctive feature of this work is to address consensus problems for networks with directed information flow. We provide analytical tools that rely on algebraic graph theory, matrix theory, and control theory. Simulations are provided that demonstrate the effectiveness of our theoretical results.

11,658 citations

Journal ArticleDOI
05 Mar 2007
TL;DR: A theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees is provided.
Abstract: This paper provides a theoretical framework for analysis of consensus algorithms for multi-agent networked systems with an emphasis on the role of directed information flow, robustness to changes in network topology due to link/node failures, time-delays, and performance guarantees. An overview of basic concepts of information consensus in networks and methods of convergence and performance analysis for the algorithms are provided. Our analysis framework is based on tools from matrix theory, algebraic graph theory, and control theory. We discuss the connections between consensus problems in networked dynamic systems and diverse applications including synchronization of coupled oscillators, flocking, formation control, fast consensus in small-world networks, Markov processes and gossip-based algorithms, load balancing in networks, rendezvous in space, distributed sensor fusion in sensor networks, and belief propagation. We establish direct connections between spectral and structural properties of complex networks and the speed of information diffusion of consensus algorithms. A brief introduction is provided on networked systems with nonlocal information flow that are considerably faster than distributed systems with lattice-type nearest neighbor interactions. Simulation results are presented that demonstrate the role of small-world effects on the speed of consensus algorithms and cooperative control of multivehicle formations

9,715 citations

Journal ArticleDOI
TL;DR: A theoretical explanation for the observed behavior of the Vicsek model, which proves to be a graphic example of a switched linear system which is stable, but for which there does not exist a common quadratic Lyapunov function.
Abstract: In a recent Physical Review Letters article, Vicsek et al. propose a simple but compelling discrete-time model of n autonomous agents (i.e., points or particles) all moving in the plane with the same speed but with different headings. Each agent's heading is updated using a local rule based on the average of its own heading plus the headings of its "neighbors." In their paper, Vicsek et al. provide simulation results which demonstrate that the nearest neighbor rule they are studying can cause all agents to eventually move in the same direction despite the absence of centralized coordination and despite the fact that each agent's set of nearest neighbors change with time as the system evolves. This paper provides a theoretical explanation for this observed behavior. In addition, convergence results are derived for several other similarly inspired models. The Vicsek model proves to be a graphic example of a switched linear system which is stable, but for which there does not exist a common quadratic Lyapunov function.

8,233 citations

MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations