scispace - formally typeset
Search or ask a question

Showing papers by "Vincenzo Cavasinni published in 2009"


Journal ArticleDOI
V. V. Lyubushkin, B. A. Popov1, J.J. Kim2, L. Camilleri3  +167 moreInstitutions (18)
TL;DR: In this article, the axial mass parameter M A was extracted from the measured quasi-elastic neutrino cross section, which is consistent with the AXial mass values recalculated from the antineutrino X 2 shape analysis of the high purity sample of ν μ 2 track events, but has smaller systematic error.
Abstract: We have studied the muon neutrino and antineutrino quasi-elastic (QEL) scattering reactions ( ν μ n→ μ - p and bar{ν }_{μ}ptoμ+n ) using a set of experimental data collected by the NOMAD Collaboration. We have performed measurements of the cross-section of these processes on a nuclear target (mainly carbon) normalizing it to the total ν μ ( bar{ν}_{μ} ) charged-current cross section. The results for the flux-averaged QEL cross sections in the (anti)neutrino energy interval 3-100 GeV are < σ_{qel}rangle_{ν_{μ}}=(0.92±0.02(stat)±0.06(syst))×10^{-38} cm2 and <σ_{qel}rangle_{bar{ν}_{μ}}=(0.81±0.05(stat)±0.09(syst))×10^{-38} cm2 for neutrino and antineutrino, respectively. The axial mass parameter M A was extracted from the measured quasi-elastic neutrino cross section. The corresponding result is M A =1.05±0.02(stat)±0.06(syst) GeV. It is consistent with the axial mass values recalculated from the antineutrino cross section and extracted from the pure Q 2 shape analysis of the high purity sample of ν μ quasi-elastic 2-track events, but has smaller systematic error and should be quoted as the main result of this work. Our measured M A is found to be in good agreement with the world average value obtained in previous deuterium filled bubble chamber experiments. The NOMAD measurement of M A is lower than those recently published by K2K and MiniBooNE Collaborations. However, within the large errors quoted by these experiments on M A , these results are compatible with the more precise NOMAD value.

177 citations


Journal ArticleDOI
P. Adragna, Calin Alexa, K. J. Anderson1, A. Antonaki2  +227 moreInstitutions (23)
TL;DR: In this article, the authors report test beam studies of 11% of the production ATLAS Tile Calorimeter modules and show that the light yield of the calorimeter was View the MathML source, exceeding the design goal by 40%.
Abstract: We report test beam studies of 11% of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3 to 350 GeV. Two independent studies showed that the light yield of the calorimeter was View the MathML source, exceeding the design goal by 40%. Electron beams provided a calibration of the modules at the electromagnetic energy scale. Over 200 calorimeter cells the variation of the response was 2.4%. The linearity with energy was also measured. Muon beams provided an intercalibration of the response of all calorimeter cells. The response to muons entering in the ATLAS projective geometry showed an RMS variation of 2.5% for 91 measurements over a range of rapidities and modules. The mean response to hadrons of fixed energy had an RMS variation of 1.4% for the modules and projective angles studied. The response to hadrons normalized to incident beam energy showed an 8% increase between 10 and 350 GeV, fully consistent with expectations for a noncompensating calorimeter. The measured energy resolution for hadrons of View the MathML source was also consistent with expectations. Other auxiliary studies were made of saturation recovery of the readout system, the time resolution of the calorimeter and the performance of the trigger signals from the calorimeter.

115 citations


BookDOI
Georges Aad, E. Abat1, Brad Abbott, Jalal Abdallah  +2595 moreInstitutions (1)
05 Jan 2009
TL;DR: In this paper, a detailed study of the expected performance of the ATLAS detector is presented, together with the reconstruction of tracks, leptons, photons, missing energy and jets, along with the performance of b-tagging and the trigger.
Abstract: A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN.

78 citations


Journal ArticleDOI
M. Ageron, Juan A. Aguilar1, Arnauld Albert, F. Ameli2  +167 moreInstitutions (15)
TL;DR: In this paper, the first Antares detector line was deployed on 14th of February 2006 and was connected to the readout two weeks later, and measurements of atmospheric muons from selected runs during the first six months of operation were presented.

53 citations


Journal ArticleDOI
C.T. Kullenberg1, S. R. Mishra1, M.B. Seaton1, J.J. Kim1  +166 moreInstitutions (18)
TL;DR: In this article, the authors present a study of exclusive neutral pion production in neutrino-nucleus neutral current interactions using data from the NOMAD experiment at the CERN SPS.

28 citations


Journal ArticleDOI
E. Abat1, J. Abdallah2, T. N. Addy3, P. Adragna4  +363 moreInstitutions (69)
TL;DR: In this article, the response of the ATLAS central calorimeters to pions with energies in the range between 3 and 9 GeV is presented and compared to the prediction of a detector simulation program using the toolkit Geant 4.
Abstract: A fully instrumented slice of the ATLAS central detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the response of the central calorimeters to pions with energies in the range between 3 and 9 GeV is presented. The linearity and the resolution of the combined calorimetry (electromagnetic and hadronic calorimeters) was measured and compared to the prediction of a detector simulation program using the toolkit Geant 4.

17 citations


01 May 2009
TL;DR: In this paper, the Hidden-Valley scenario is used for exploring the challenges posed by long-lived particles with long decay paths to the trigger and the reconstruction capabilities of the ATLAS apparatus.
Abstract: Neutral particles with long decay paths that decay to many-particle final states represent, from an experimental point of view, a challenge both for the trigger and for the reconstruction capabilities of the ATLAS apparatus. The Hidden Valley scenario serves as an excellent setting for the purpose of exploring the challenges to the trigger posed by long-lived particles.

11 citations


Posted Content
TL;DR: The Fast Tracker (FTK) is a proposed upgrade to the ATLAS trigger system that will operate at full Level-1 output rates and provide high quality tracks reconstructed over the entire detector by the start of processing in Level-2.
Abstract: The Fast Tracker (FTK) is a proposed upgrade to the ATLAS trigger system that will operate at full Level-1 output rates and provide high quality tracks reconstructed over the entire detector by the start of processing in Level-2. FTK solves the combinatorial challenge inherent to tracking by exploiting the massive parallelism of Associative Memories (AM) that can compare inner detector hits to millions of pre-calculated patterns simultaneously. The tracking problem within matched patterns is further simplified by using pre-computed linearized fitting constants and leveraging fast DSP's in modern commercial FPGA's. Overall, FTK is able to compute the helix parameters for all tracks in an event and apply quality cuts in approximately one millisecond. By employing a pipelined architecture, FTK is able to continuously operate at Level-1 rates without deadtime. The system design is defined and studied using ATLAS full simulation. Reconstruction quality is evaluated for single muon events with zero pileup, as well as WH events at the LHC design luminosity. FTK results are compared with the tracking capability of an offline algorithm.

3 citations


Proceedings ArticleDOI
TL;DR: The architecture evolution of the highly-parallel dedicated processor FTK is described, which is driven by the simulation of LHC events at high luminosity, to provide precise on-line track reconstruction for future hadronic collider experiments.
Abstract: We describe the architecture evolution of the highly-parallel dedicated processor FTK, which is driven by the simulation of LHC events at high luminosity (1034 cm-2 s-1). FTK is able to provide precise on-line track reconstruction for future hadronic collider experiments. The processor, organized in a two-tiered pipelined architecture, execute very fast algorithms based on the use of a large bank of pre-stored patterns of trajectory points (first tier) in combination with full resolution track fitting to refine pattern recognition and to determine off-line quality track parameters. We describe here how the high luminosity simulation results have produced a new organization of the hardware inside the FTK processor core.