scispace - formally typeset
Search or ask a question

Showing papers by "W. van Straten published in 2008"


Journal ArticleDOI
TL;DR: In this paper, a model-independent kinematic distance based on an apparent orbital period derivative, P_b, was determined at the 1.5% level of precision (D_k = 157.0 ± 2.4 pc), making it one of the most accurate stellar distance estimates published.
Abstract: Analysis of 10 years of high-precision timing data on the millisecond pulsar PSR J0437–4715 has resulted in a model-independent kinematic distance based on an apparent orbital period derivative, P_b, determined at the 1.5% level of precision (D_k = 157.0 ± 2.4 pc), making it one of the most accurate stellar distance estimates published to date. The discrepancy between this measurement and a previously published parallax distance estimate is attributed to errors in the DE200 solar system ephemerides. The precise measurement of P_b allows a limit on the variation of Newton's gravitational constant, |G/G| ≤ 23 × 10^−12 yr^−1. We also constrain any anomalous acceleration along the line of sight to the pulsar to |a⊙/c| ≤ 1.5 × 10^−18 s^−1 at 95% confidence, and derive a pulsar mass, m_(psr) = 1.76 ± 0.20 M⊙, one of the highest estimates so far obtained.

299 citations


Journal ArticleDOI
TL;DR: In this article, a model-independent kinematic distance based on an apparent orbital period derivative, Pbdot, was determined at the 1.5% level of precision (Dk = 157.0 +/- 2.4 pc), making it one of the most accurate stellar distance estimates published.
Abstract: Analysis of ten years of high-precision timing data on the millisecond pulsar PSR J0437-4715 has resulted in a model-independent kinematic distance based on an apparent orbital period derivative, Pbdot, determined at the 1.5% level of precision (Dk = 157.0 +/- 2.4 pc), making it one of the most accurate stellar distance estimates published to date. The discrepancy between this measurement and a previously published parallax distance estimate is attributed to errors in the DE200 Solar System ephemerides. The precise measurement of Pbdot allows a limit on the variation of Newton's gravitational constant, |Gdot/G| < 23 x 10^{-12} 1/yr. We also constrain any anomalous acceleration along the line of sight to the pulsar to |a(Sun)/c| < 1.5 x 10^{-18} 1/s at 95% confidence, and derive a pulsar mass, m(psr) = 1.76 +/- 0.20 M, one of the highest estimates so far obtained.

13 citations


Journal ArticleDOI
TL;DR: The Parkes Pulsar Timing Array (PTA) project as mentioned in this paper is the only pulsar timing array project in the Southern hemisphere that has been proposed to detect gravitational waves.
Abstract: The first direct detection of gravitational waves may be made through observations of pulsars. The principal aim of pulsar timing array projects being carried out worldwide is to detect ultra-low frequency gravitational waves (f ~ 10^-9 to 10^-8 Hz). Such waves are expected to be caused by coalescing supermassive binary black holes in the cores of merged galaxies. It is also possible that a detectable signal could have been produced in the inflationary era or by cosmic strings. In this paper we review the current status of the Parkes Pulsar Timing Array project (the only such project in the Southern hemisphere) and compare the pulsar timing technique with other forms of gravitational-wave detection such as ground- and space-based interferometer systems.

4 citations


Journal ArticleDOI
TL;DR: In this paper, a four-dimensional statistical description of electromagnetic radiation is developed and applied to the analysis of radio pulsar polarization, which provides an elementary statistical explanation of the modal broadening phenomenon in single-pulse observations.
Abstract: A four-dimensional statistical description of electromagnetic radiation is developed and applied to the analysis of radio pulsar polarization. The new formalism provides an elementary statistical explanation of the modal broadening phenomenon in single pulse observations. It is also used to argue that the degree of polarization of giant pulses has been poorly defined in past studies. Single and giant pulse polarimetry typically involves sources with large flux densities and observations with high time resolution, factors that necessitate consideration of source-intrinsic noise and small-number statistics. Self noise is shown to fully explain the excess polarization dispersion previously noted in single pulse observations of bright pulsars, obviating the need for additional randomly polarized radiation. Rather, these observations are more simply interpreted as an incoherent sum of covariant, orthogonal, partially polarized modes. Based on this premise, the four-dimensional covariance matrix of the Stokes parameters may be used to derive mode-separated pulse profiles without any assumptions about the intrinsic degrees of mode polarization. Finally, utilizing the small-number statistics of the Stokes parameters, it is established that the degree of polarization of an unresolved pulse is fundamentally undefined; therefore, previous claims of highly polarized giant pulses are unsubstantiated. Unpublished supplementary material is appended after the bibliography.

1 citations