scispace - formally typeset
Search or ask a question

Showing papers by "Wei-Ping Pan published in 2012"


Journal ArticleDOI
TL;DR: In this article, the pyrolysis behavior of bitumen was investigated using a thermogravimetric analyzer-mass spectrometer system and a differential scanning calorimeter (DSC).
Abstract: The pyrolysis behavior of bitumen was investigated using a thermogravimetric analyzer–mass spectrometer system (TG–MS) and a differential scanning calorimeter (DSC) as well as a pyrolysis-gas chromatograph/mass spectrometer system (Py-GC/MS). TG results showed that there were three stages of weight loss during pyrolysis—less than 110, 110–380, and 380–600 °C. Using distributed activation energy model, the average activation energy of the thermal decomposition of bitumen was calculated at 79 kJ mol−1. The evolved gas from the pyrolysis showed that organic species, such as alkane and alkene fragments had a peak maximum temperature of 130 and 480 °C, respectively. Benzene, toluene, and styrene released at 100 and 420 °C. Most of the inorganic compounds, such as H2, H2S, COS, and SO2, released at about 380 °C while the CO2 had the maximum temperature peaks at 400 and 540 °C, respectively. FTIR spectra were taken of the residues of the different stages, and the results showed that the C–H bond intensity decreased dramatically at 380 °C. Py-GC/MS confirmed the composition of the evolved gas. The DSC revealed the endothermic nature of the bitumen pyrolysis.

52 citations


Journal ArticleDOI
TL;DR: In this article, the thermal properties of biodiesel at low and high temperatures were investigated by using thermogravimetric analyzer, differential scanning calorimetry, and sorption analyzer.
Abstract: Biodiesel is a prospective and promising fuel for diesel engines. However, some aspects need improvement, to develop into an ideal fuel, such as flow properties at low temperatures and storage stability at high temperatures with exposure to the air. Thermal analysis is an efficient tool for measuring properties, such as crystallization temperature, and thermal and oxidative stabilities. In this study, the thermal behaviors of biodiesel at low and high temperatures were investigated by using thermogravimetric analyzer, differential scanning calorimetry, pressurized differential scanning calorimetry (PDSC), and sorption analyzer (SA). The soy biodiesel was obtained through a transesterification reaction with a homogeneous catalyst. The constituents of the soy biodiesel as determined by gas chromatography show that methyl esters content was 99 % and of these 84 % were unsaturated fatty acids. TG results illustrate that the total weight loss of the biodiesel was 99 % below 300 °C under nitrogen flow, indicating a high purity biodiesel. The onset decomposition temperature and the peak temperatrue of the soy biodiesel were 193 and 225 °C, respectively, implying the biodiesel has good thermal stability. PDSC results show that the oxidation onset temperature of the soy biodiesel was 152 °C, and the oxidative induction time was 24 min. DSC results demonstrate that the onset crystallization temperature of the soy biodiesel was 1.0 °C. The SA results point out that with increasing temperature and humidity, the soy biodiesel absorbed more water, and in which humidity was the dominant factor. The water absorption and desorption of the soy biodiesel is a non-reversible process. The preferable storage conditions for soy biodiesel occur when humidity is less than 30 % and the temperature is less than 30 °C. In summary, thermal analysis is a faster alternative for thermal behavior studies as compared with conventional standard methods.

28 citations


Journal ArticleDOI
TL;DR: In this paper, the thermal properties of the potential Cu-based oxygen carrier were investigated by using an X-ray diffraction (XRD), scanning electron microscope (SEM), and surface analyzer.
Abstract: Chemical looping combustion (CLC) is a novel combustion technology with the capability for segregation of exhaust products (i.e., carbon dioxide/H2O or N2/O2). The combustion is performed in two interconnected reactors with a solid oxygen carrier circulating between them, transferring oxygen from the air to the fuel. The feasibility of a successful CLC system depends on the selection of an appropriate oxygen carrier. Cu-based oxygen carriers are good oxygen carriers due to high reactivity. However, it faces low melting point, agglomeration problems in fluidized bed. In this study, a circular reduction–oxidation reaction simulated to the cyclic operation of the Cu-based oxygen carrier was conducted on the thermogravimetric analyzer (TG). The thermal behaviors of the potential Cu-based oxygen carrier were investigated by using an X-ray diffraction (XRD), scanning electron microscope (SEM), and surface analyzer. Multiple TG results show that the weight loss was 3.4%, indicating that the loading CuO amount was 17%. Moreover, the weight loss and weight gain was equal during 73 redox cycles, suggesting the good thermal stability of the oxygen carrier. The conversion rate of reduction and oxidation for each redox cycle remained constant even after 73 redox cycles. XRD results show the new phase formation of CuAl2O4 during redox cycles, which promotes the thermal stabilization of the oxygen carrier. The surface area of the oxygen carrier decreased from 105 to 13 m2 g−1 after 73 redox cycles and the particle size distribution shifted from 5–15 nm to 15–30 nm, suggesting that the micorpores were blocked or collapsed. However, the reactivity of the oxygen carrier didn’t decrease. SEM results show that CuO was evenly distributed on the surface of Al2O3 after 73 redox cycles. Overall, these results suggested that the Cu-based oxygen carrier was ready for fluidized bed tests.

15 citations


Journal ArticleDOI
TL;DR: In this article, the thermal properties of home-made zeolite were analyzed and identified as steam adsorption, which is an important discovery for pollution control and global warming.
Abstract: Volatile organic compounds (VOCs) and greenhouse gases are the main factors involved in pollution control and global warming. Various treatment methods involving incineration, adsorption, etc., have been employed to reduce VOCs and greenhouse gases concentration in the operating environment and atmosphere. Activated carbon, zeolite, silica gel, and alumina have been broadly used to adsorb pollutants in various industrial applications. Based on the promising effect of adsorption, we analyzed and identified the thermal phenomena of home-made zeolite using various instruments. The endothermic reaction under 100 °C of home-made zeolite was identified as steam adsorption, which is an important discovery. The optimal adsorption temperatures of home-made zeolite have been determined at 200–550 °C.

11 citations


Journal ArticleDOI
TL;DR: It is demonstrated that using FGD material with lower concentration levels of Hg and other elements of concern does not necessary post a lower environmental risk, and that considering only the amounts of trace elements uptake in surface vegetation may under estimate the overall release of the trace elements fromFGD material-amended soils.
Abstract: A pilot-scale field study was carried out to investigate the distribution of Hg and other selected elements (i.e., As, B, and Se), i.e., emission to ambient air, uptake by surface vegetation, and/or rainfall infiltration, after flue gas desulfurization (FGD) material is applied to soil. Three FGD materials collected from two power plants were used. Our results show Hg released into the air and uptake in grass from all FGD material-treated soils were all higher (P < 0.1) than the amounts observed from untreated soil. Hg in the soil amended with the FGD material collected from a natural oxidation wet scrubber (i.e., SNO) was more readily released to air compared to the other two FGD materials collected from the synthetic gypsum dewatering vacuum belt (i.e., AFO-gypsum) and the waste water treatment plant (i.e., AFO-CPS) of a forced oxidation FGD system. No Hg was detected in the leachates collected during the only 3-hour, 1-inch rainfall event that occurred throughout the 4-week testing period. For every kilogram of FGD material applied to soil, AFO-CPS released the highest amount of Hg, B, and Se, followed by SNO, and AFO gypsum. Based on the same energy production rate, the land application of SNO FGD material from Plant S released higher amounts of Hg and B into ambient air and/or grass than the amounts released when AFO-gypsum from Plant A was used. Using FGD material with lower concentration levels of Hg and other elements of concern does not necessary post a lower environmental risk. In addition, this study demonstrates that considering only the amounts of trace elements uptake in surface vegetation may under estimate the overall release of the trace elements from FGD material-amended soils. It also shows, under the same soil amendment conditions, the mobility of trace elements varies when FGD materials produced from different processes are used.

10 citations


Reference EntryDOI
TL;DR: In this article, the authors describe a combination of thermogravimetry with differential scanning calorimetry or differential thermal analysis to produce a simultaneous DTA/DSC-TGA (SDT).
Abstract: Simultaneous techniques utilize the application of two or more techniques to the same sample at the same time. This technique has greatly improved the understanding of numerous materials. One of the most common forms of a simultaneous technique is the combination of thermogravimetry with differential scanning calorimetry or differential thermal analysis to produce a simultaneous DTA/DSC-TGA (SDT). This combination allows the weight and heat flow of a material to be monitored simultaneously. Another simultaneous technique that is widely used is the analysis of gaseous products, which is commonly referred to as evolved gas analysis (EGA). EGA usually employs a mass spectrometer or an infrared spectrometer combined to a thermal analysis instrument. This setup allows the gasses to be monitored as they are evolved. This article details the SDT and EGA techniques and provides references to more detailed descriptions. Keywords: evolved gas analysis; TG-MS; TG-IR; simultaneous thermal analysis

1 citations