scispace - formally typeset
Search or ask a question

Showing papers by "Wei Wang published in 2016"


Journal ArticleDOI
TL;DR: It is suggested that the elevated level of circulating PMPs, showing close correlation with the secretion of inflammation-related factors, may contribute to the increased procoagulant activity in patients with OSCC.
Abstract: Numerous studies have demonstrated that circulating microparticles (MPs) play important roles in a variety of diseases (e.g., atherosclerosis, hypertension, and diabetes), but the association between circulating MPs and oral squamous cell carcinoma (OSCC) remains largely unknown. In the present study, the circulating platelet-derived MPs (PMPs) in 63 patients with OSCC, 22 patients with infected keratocystic odontogenic tumor, and 31 healthy volunteers were characterized and quantified by flow cytometric analysis. The coagulation function of patients with OSCC was correspondingly evaluated. Meanwhile, the inflammation-related cytokines were detected in plasma by enzyme-linked immunosorbent assay and in tumor tissues by immunohistochemistry. Our results showed that the plasma level of circulating PMPs was significantly higher in OSCC patients compared with healthy volunteers and patients with infected keratocystic odontogenic tumor, and they showed positive correlation with the increased level of fibrinogen. Moreover, the coagulation time was significantly shorter after the MPs were added to the MP-free plasma. Most important, the levels of interleukin 6 and tumor necrosis factor α in plasma and tumor tissues were significantly increased in OSCC patients, which were closely correlated with the elevated level of circulating PMPs. In summary, this study suggests that the elevated level of circulating PMPs, showing close correlation with the secretion of inflammation-related factors, may contribute to the increased procoagulant activity in patients with OSCC.

48 citations


Journal ArticleDOI
TL;DR: In vitro studies revealed that circulating MPs isolated from OSCC patients could be effectively taken up by human umbilical vein endothelial cells and could promote the proliferation, migration, invasion, and tube formation of recipient endothelium cells, accompanied by increased expression of proangiogenic factors.
Abstract: Our recent study established the increased circulating microparticles (MPs) and their procoagulant activity in oral squamous cell carcinoma (OSCC). In the present study, we further evaluated different phenotypes of circulating MPs in OSCC patients and explored their clinical significance and effects on angiogenesis (a critical event in tumor progression). To conduct the study, circulating MPs in 45 OSCC patients and 18 healthy volunteers were characterized and quantified by transmission electron microscopy and flow cytometry. Correlations between circulating MPs and clinicopathologic data, microvessel density, and proangiogenic factor levels in patients with OSCC were analyzed by immunohistochemistry and Spearman rank correlation test. Additionally, the in vitro studies were performed with use of human umbilical vein endothelial cells. Our results showed that the levels of circulating MPs as well as the subsets of platelet-derived, endothelium-derived, and pan-leukocyte MPs in stages III to IV OSCC were significantly higher than stages I to II and healthy subjects. Moreover, these increased circulating MPs were significantly correlated with tumor size, TNM stages, microvessel density, and expression levels of vascular endothelial growth factor (VEGF) and matrix metallopeptidase 9 (MMP9) in OSCC patients. The in vitro studies revealed that circulating MPs isolated from OSCC patients could be effectively taken up by human umbilical vein endothelial cells and could promote the proliferation, migration, invasion, and tube formation of recipient endothelial cells, accompanied by increased expression of proangiogenic factors. In summary, circulating MPs play important roles in angiogenesis and local tumor progression of OSCC. Our results shed new light on the progression of OSCC and might be helpful to explore novel treatment strategies targeting tumor angiogenesis.

24 citations


Journal ArticleDOI
Yuzhi Lu1, Shuangchan Wu1, Yuan Yue1, Si He1, Jun Li1, Jun Tang1, Wei Wang1, Hai-Bing Zhou1 
TL;DR: The investigation of the Schiff base side chain of gossypol revealed that the unique anticancer effect was achieved by the introduction of hydrophobic ester groups, which is promising for further drug development.
Abstract: A series of gossypol Schiff bases that were derived from unnatural linear amino acid methyl esters were identified and found to be much more potent than gossypol and ABT-199 in terms of anticancer activity. This is the first example of gossypol Schiff bases with increased activity. The investigation of the Schiff base side chain of gossypol revealed that the unique anticancer effect was achieved by the introduction of hydrophobic ester groups. The optimized products showed low micromolar pan antitumor activities against NCI-60 tumor cell lines, which is promising for further drug development. Studies on the preliminary mechanism of action for their cellular activities was also carried out with antiapoptotic protein (Bcl-2 and Mcl-1) inhibition FP assays. The molecular modeling analysis demonstrated a possible binding mode for these compounds with Bcl-2, which could explain the binding affinity of the novel gossypol Schiff bases with these proteins.

15 citations


Journal ArticleDOI
TL;DR: New ideas concerning benzene‐induced hematopoietic toxicity or embryotoxicity can provide a new experimental evidence for preventing childhood leukemia and LKB1 may play a critical role in apoptosis and cell cycle arrest of HQ‐treated HSCs.
Abstract: Epidemiological studies suggest that the increasing incidence of childhood leukemia may be due to maternal exposure to benzene, which is a known human carcinogen; however, the mechanisms involved remain unknown. Liver Kinase B1 (LKB1) acts as a regulator of cellular energy metabolism and functions to regulate hematopoietic stem cell (HSC) homeostasis. We hypothesize that LKB1 contributes to the deregulation of fetal or bone hematopoiesis caused by the benzene metabolite hydroquinone (HQ). To evaluate this hypothesis, we compared the effects of HQ on murine fetal liver hematopoietic stem cells (FL-HSCs) and bone marrow hematopoietic stem cells (BM-HSCs). FL-HSCs and BM-HSCs were isolated and enriched by a magnetic cell sorting system and exposed to various concentrations of HQ (0, 1.25, 2.5, 5, 10, 20, and 40 μM) for 24 h. We found that the inhibition of differentiation and growth, as well as the apoptosis rate of FL-HSCs, induced by HQ were consistent with the changes in BM-HSCs. Furthermore, G1 cell cycle arrest was observed in BM-HSCs and FL-HSCs in response to HQ. Importantly, FL-HSCs were more sensitive than BM-HSCs after exposure to HQ. The highest induction of LKB1 and adenosine monophosphate-activated protein kinase (AMPK) was observed with a much lower concentration of HQ in FL-HSCs than in BM-HSCs. LKB1 may play a critical role in apoptosis and cell cycle arrest of HQ-treated HSCs. This research has developed innovative ideas concerning benzene-induced hematopoietic toxicity or embryotoxicity, which can provide a new experimental evidence for preventing childhood leukemia. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 830-841, 2016.

9 citations