scispace - formally typeset
Search or ask a question

Showing papers by "Ying Hu published in 2013"


Journal ArticleDOI
TL;DR: Subjective analysis of numbers of a range of bacterial targets suggest changes in the gut microbiota abundance were induced by red meat and RS treatments and these changes could contribute to the reported outcomes.
Abstract: This work was supported by the National Health and Medical Research Council (grant ID 535079) and CSIRO Preventative Health National Research Flagship

70 citations


Journal ArticleDOI
23 May 2013-PLOS ONE
TL;DR: Data show, for the first time, that combination of selenium and green tea is more effective in suppressing colorectal oncogenesis than either agent alone.
Abstract: Dietary supplementation of selenium and green tea holds promise in cancer prevention. In this study, we evaluated the efficacies of selenium and green tea administered individually and in combination against colorectal cancer in an azoxymethane (AOM)-induced rat colonic carcinogenesis model and determined the underlying mechanisms of the protection. Four-week old Sprague-Dawley male rats were fed with diets containing 0.5% green tea extract, 1ppm selenium as selenium-enriched milk protein, or combination of 1ppm selenium and 0.5% green tea extract. Animals received 2 AOM (15 mg/kg) treatments to induce colonic oncogenesis. Rats were killed 8 or 30 wk later after the last AOM to examine the effect of dietary intervention on aberrant crypt foci (ACF) formation or tumor development. On sacrifice, colons were examined for ACF and tumors, the mRNA levels of SFRP5 and Cyclin D1, and the proteins levels of s-catenin, COX-2, Ki-67, DNMT1 and acetyl histone H3. The combination of selenium and green tea resulted in a significant additive inhibition of large ACF formation, this effect was greater than either selenium or green tea alone, P<0.01; the combination also had a significant additive inhibition effect on all tumor endpoints, the effect of the combination diet on tumor incidence, multiplicity and size was greater than selenium or green tea alone, P<0.01. Rats fed the combination diet showed marked reduction of DNMT1 expression and induction of histone H3 acetylation, which were accompanied by restoration of SFRP5 mRNA in normal-appearing colonic crypts. The combination diet also significantly reduced s-catenin nuclear translocation, Cyclin D1 expression and cell proliferation. These data show, for the first time, that combination of selenium and green tea is more effective in suppressing colorectal oncogenesis than either agent alone. The preventive effect is associated with regulation of genetic and epigenetic biomarkers implicated in colonic carcinogenesis.

45 citations


Journal ArticleDOI
21 Mar 2013-PLOS ONE
TL;DR: Discovery analysis of TCGA data reveals germline genetic variations that may play a role in ovarian cancer survival even among late-stage cases, and these findings provide potential targets for further exploration as prognostic biomarkers and individualized therapies.
Abstract: Background Ovarian cancer remains a significant public health burden, with the highest mortality rate of all the gynecological cancers. This is attributable to the late stage at which the majority of ovarian cancers are diagnosed, coupled with the low and variable response of advanced tumors to standard chemotherapies. To date, clinically useful predictors of treatment response remain lacking. Identifying the genetic determinants of ovarian cancer survival and treatment response is crucial to the development of prognostic biomarkers and personalized therapies that may improve outcomes for the late-stage patients who comprise the majority of cases. Methods To identify constitutional genetic variations contributing to ovarian cancer mortality, we systematically investigated associations between germline polymorphisms and ovarian cancer survival using data from The Cancer Genome Atlas Project (TCGA). Using stage-stratified Cox proportional hazards regression, we examined 650,000 SNP loci for association with survival. We additionally examined whether the association of significant SNPs with survival was modified by somatic alterations. Results Germline polymorphisms at rs4934282 (AGAP11/C10orf116) and rs1857623 (DNAH14) were associated with stage-adjusted survival ( = 1.12e-07 and 1.80e-07, FDR = 1.2e-04 and 2.4e-04, respectively). A third SNP, rs4869 (C10orf116), was additionally identified as significant in the exome sequencing data; it is in near-perfect LD with rs4934282. The associations with survival remained significant when somatic alterations. Conclusions Discovery analysis of TCGA data reveals germline genetic variations that may play a role in ovarian cancer survival even among late-stage cases. The significant loci are located near genes previously reported as having a possible relationship to platinum and taxol response. Because the variant alleles at the significant loci are common (frequencies for rs4934282 A/C alleles = 0.54/0.46, respectively; rs1857623 A/G alleles = 0.55/0.45, respectively) and germline variants can be assayed noninvasively, our findings provide potential targets for further exploration as prognostic biomarkers and individualized therapies.

33 citations


Journal ArticleDOI
TL;DR: The first genomic deletion causing EMARDD is identified following identification of a novel homozygous deletion of exon 7 in MEGF10, and features suggesting the mutation arose by fork stalling and template switching are identified.

26 citations


Journal ArticleDOI
19 Jul 2013-PLOS ONE
TL;DR: The results provide evidence for additional ways, beyond the effects of single SNPs, by which genetic factors might contribute to the susceptibility to develop a particular phenotype of NAFLD and then progress to cirrhosis.
Abstract: Non-alcoholic fatty liver disease (NAFLD) is a common liver disease; the histological spectrum of which ranges from steatosis to steatohepatitis. Nonalcoholic steatohepatitis (NASH) often leads to cirrhosis and development of hepatocellular carcinoma. To better understand pathogenesis of NAFLD, we performed the pathway of distinction analysis (PoDA) on a genome-wide association study dataset of 250 non-Hispanic white female adult patients with NAFLD, who were enrolled in the NASH Clinical Research Network (CRN) Database Study, to investigate whether biologic process variation measured through genomic variation of genes within these pathways was related to the development of steatohepatitis or cirrhosis. Pathways such as Recycling of eIF2:GDP, biosynthesis of steroids, Terpenoid biosynthesis and Cholesterol biosynthesis were found to be significantly associated with NASH. SNP variants in Terpenoid synthesis, Cholesterol biosynthesis and biosynthesis of steroids were associated with lobular inflammation and cytologic ballooning while those in Terpenoid synthesis were also associated with fibrosis and cirrhosis. These were also related to the NAFLD activity score (NAS) which is derived from the histological severity of steatosis, inflammation and ballooning degeneration. Eukaryotic protein translation and recycling of eIF2:GDP related SNP variants were associated with ballooning, steatohepatitis and cirrhosis. Il2 signaling events mediated by PI3K, Mitotic metaphase/anaphase transition, and Prostanoid ligand receptors were also significantly associated with cirrhosis. Taken together, the results provide evidence for additional ways, beyond the effects of single SNPs, by which genetic factors might contribute to the susceptibility to develop a particular phenotype of NAFLD and then progress to cirrhosis. Further studies are warranted to explain potential important genetic roles of these biological processes in NAFLD.

22 citations


Journal ArticleDOI
TL;DR: In rats given AOM (10 mg/kg), the formation of O(6)meG occurs within 2 h of exposure, accompanied by rapid depletion of MGMT activity and followed by the induction of an acute apoptotic response that peaks at 6-8 h, suggesting that apoptosis is probably triggered by O( 6) meG.
Abstract: Azoxymethane (AOM) is an alkylating agent that generates mutagenic and carcinogenic O(6)-methylguanine (O(6)meG) adducts in DNA. O(6)meG has been detected in human colonic DNA; hence, understanding the innate cellular events occurring in response to the formation of O(6)meG is important in developing preventive strategies for colorectal cancer. We explored the time-course, dose-response, and kinetics of O(6)meG formation and its removal by the DNA repair protein, O(6)-methylguanine DNA methyltransferase (MGMT), and apoptosis. In rats given AOM (10 mg/kg), the formation of O(6)meG occurs within 2 h of exposure, accompanied by rapid depletion of MGMT activity and followed by the induction of an acute apoptotic response that peaks at 6-8 h. MGMT repair and apoptosis are dependent on AOM dose and O(6)meG load. Apoptosis is initiated only when a high O(6)meG load is present and MGMT activity is fully depleted. AOM, 10 mg/kg, overwhelms MGMT repair for about 96 h and renewed MGMT activity is only observed once O(6)meG is no longer detectable. A threshold for apoptosis is observed at 6 h after 6 mg/kg AOM, when a high O(6)meG persists and MGMT activity is very low. These data suggest that apoptosis is probably triggered by O(6)meG, but only once the capacity of MGMT to repair O(6)meG is exhausted. In the colonic epithelium, apoptosis may be complementary to MGMT, in terms of minimising potentially mutagenic events and maintaining a healthy genome.

19 citations


Journal ArticleDOI
28 Aug 2013-PLOS ONE
TL;DR: Using a genetically engineered mouse mammary tumor model, it is demonstrated that the PAM50 subtype signature of tumors driven by a common oncogenic event can be significantly influenced by the genetic background on which the tumor arises.
Abstract: Recent advances in genome wide transcriptional analysis have provided greater insights into the etiology and heterogeneity of breast cancer. Molecular signatures have been developed that stratify the conventional estrogen receptor positive or negative categories into subtypes that are associated with differing clinical outcomes. It is thought that the expression patterns of the molecular subtypes primarily reflect cell-of-origin or tumor driver mutations. In this study however, using a genetically engineered mouse mammary tumor model we demonstrate that the PAM50 subtype signature of tumors driven by a common oncogenic event can be significantly influenced by the genetic background on which the tumor arises. These results have important implications for interpretation of “snapshot” expression profiles, as well as suggesting that incorporation of genetic background effects may allow investigation into phenotypes not initially anticipated in individual mouse models of cancer.

15 citations


Journal Article
TL;DR: The protection against colorectal cancer by non-steroidal anti-inflammatory drugs (NSAIDs) is in part dependent on inhibition of cyclooxygenase (COX), and COX-inhibiting sulindac achieved the greatest protective effect.
Abstract: The protection against colorectal cancer (CRC) by non-steroidal anti-inflammatory drugs (NSAIDs) is in part dependent on inhibition of cyclooxygenase (COX). We compared the efficacy of the non-COX-inhibiting R-flurbiprofen (R-FB) with COX-inhibiting sulindac and racemic flurbiprofen (Rac-FB), and determined their effects on apoptosis, in an azoxymethane (AOM)-induced rat CRC model. In experiment 1, groups of rats were given a daily drug gavage (R-FB 30 mg/kg, Rac-FB 10 mg/kg and Sulindac 20 mg/kg) for one week, followed by AOM treatment and were sacrificed eight hours later, colons were examined for apoptosis and cell proliferation. In experiment 2, groups of rats were given two AOM treatments, followed by a daily drug gavage until they were sacrificed ten weeks later, and colons were examined for aberrant crypt foci (ACF) and prostaglandin E2 production. All drugs significantly enhanced apoptosis and inhibited ACF, irrespective of their COX-inhibiting potency (p<0.01), but sulindac was more potent in inhibition of large ACF, p<0.05. COX-inhibiting sulindac achieved the greatest protective effect. The greater safety profile of Rac-FB should provide an advantage for chemoprevention.

9 citations


Journal ArticleDOI
TL;DR: The sonic hedgehog (SHH) pathway is identified as the gene network that most significantly distinguishes tumour and tumour-adjacent samples in human hepatocellular carcinoma (HCC).
Abstract: The development and progression of cancer is associated with disruption of biological networks. Historically studies have identified sets of signature genes involved in events ultimately leading to the development of cancer. Identification of such sets does not indicate which biologic processes are oncogenic drivers and makes it difficult to identify key networks to target for interventions. Using a comprehensive, integrated computational approach, the authors identify the sonic hedgehog (SHH) pathway as the gene network that most significantly distinguishes tumour and tumour-adjacent samples in human hepatocellular carcinoma (HCC). The analysis reveals that the SHH pathway is commonly activated in the tumour samples and its activity most significantly differentiates tumour from the non-tumour samples. The authors experimentally validate these in silico findings in the same biologic material using Western blot analysis. This analysis reveals that the expression levels of SHH, phosphorylated cyclin B1, and CDK7 levels are much higher in most tumour tissues as compared to normal tissue. It is also shown that siRNA-mediated silencing of SHH gene expression resulted in a significant reduction of cell proliferation in a liver cancer cell line, SNU449 indicating that SHH plays a major role in promoting cell proliferation in liver cancer. The SHH pathway is a key network underpinning HCC aetiology which may guide the development of interventions for this most common form of human liver cancer.

5 citations