scispace - formally typeset
Search or ask a question
Institution

National Centre for Medium Range Weather Forecasting

GovernmentNoida, India
About: National Centre for Medium Range Weather Forecasting is a government organization based out in Noida, India. It is known for research contribution in the topics: Monsoon & Weather Research and Forecasting Model. The organization has 176 authors who have published 368 publications receiving 4749 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the interseasonal characteristics of the Asian summer monsoon in the years of 1987 and 1988 are studied as 1987 is characterized by a large deficiency of monsoon rainfall (drought) and that of 1988 by an excess rainfall (flood) over India.
Abstract: In this paper, interseasonal characteristics of the Asian summer monsoon in the years of 1987 and 1988 are studied as 1987 is characterized by a large deficiency of monsoon rainfall (drought) and that of 1988 by a large excess monsoon rainfall (flood) over India. In order to compare the similarities and differences seen in the large scale dynamics and energetics of the Asian summer monsoon during the years of extreme monsoon activity, uninitialized analyses (12 Z) of the European Centre for Medium Range Weather Forecasts (ECMWF), U.K. are utilized in this study for the summer monsoon seasons of 1987 and 1988. It is found that the excess rainfall season (1988) is characterized by much stronger tropical easterly jet (TEJ) associated with the upper tropospheric easterlies and the East African low level jet (Somali Jet) associated with lower tropospheric westerlies. Such a feature mainly determines the strength of the reverse Hadley circulation which normally covers the South Asian continent during the northern summer. Further, the energetics of the TEJ show that the monsoon of 1988 has comparatively stronger zones of kinetic energy flux divergence (convergence) at its entrance (exit) regions. These zones of kinetic energy flux divergence are largely maintained by the adiabatic processes over the strong kinetic energy flux divergence zones over the Bay of Bengal and east central Arabian Sea as compared to that of 1987. Apart from this, both the zonal and meridional components of the ageostrophic flows are found to be stronger during 1988 monsoon season. Analysis of the vertically integrated thermodynamical features of the monsoon indicate that the monsoon of 1988 was characterized by an excess import of heat and moisture into the monsoon atmosphere as compared to that of 1987. Further, from the quantitative estimation of certain significant heat and moisture budget parameters during the contrasting monsoon seasons of 1987 and 1988, it becomes evident that considerable differences exist in the quantities of adiabatic production of heat energy, diabatic heating and the moisture source/sink.

10 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the long-term (2005-2019) observations from the Microwave Limb Sounder (MLS) onboard Aqua satellite to delineate the variability of the lower stratospheric ozone (LSO) in the Asian Summer Monsoon Anticyclone (ASMA) region.

10 citations

Journal ArticleDOI
TL;DR: After the successful inclusion of observations using the 3DVAR data assimilation technique, the model is able to simulate better structure of the convective organization as well as prominent synoptic features associated with the mid-tropospheric cyclones (MTC) than the NUD experiment and well correlated with the observations.
Abstract: The present study focuses on the performance-based comparison of simulations carried out using nudging (NUD) technique and three-dimensional variational (3DVAR) data assimilation system (3DV) of a heavy rainfall event occurred during 25–28 June 2005 along the west coast of India. The Indian conventional and nonconventional observations are used in the 3DV experiment. Three numerical experiments are conducted using WRF modeling system, the model is integrated upto 54 hours from the initial time 0000 UTC of 25 June 2005. It is noticed that the meteorological parameters are improved in the resulting high-resolution analyses prepared by NUD and 3DV compared to without data assimilation experiment (i.e., called CNTL experiment). However, after the successful inclusion of observations using the 3DVAR data assimilation technique, the model is able to simulate better structure of the convective organization as well as prominent synoptic features associated with the mid-tropospheric cyclones (MTC) than the NUD experiment and well correlated with the observations. The simulated location and intensity of rainfall is also improved in 3DV simulation as compared with other experiments. Similar results are noticed in the root mean squar errors, correlation coefficients, and Equitable Threat Scores between TRMM and model simulated rainfall for all the three experiments.

10 citations

Journal ArticleDOI
TL;DR: The current study summarizes the raindrop size distributions (RSDs) characteristic of the North Indian Ocean (NIO) tropical cyclones measured with ground-based disdrometers installed at the coastal and inland stations in south India.
Abstract: The current study summarizes the raindrop size distributions (RSDs) characteristic of the North Indian Ocean (NIO) tropical cyclones (TCs) measured with ground-based disdrometers installed at the coastal (Thiruvananthapuram, 8.5335°N, 76.9047°E) and inland (Kadapa, 14.4742°N, 78.7098°E) stations in south India. The NIO TCs observed at the coastal station showed more mid- and large-size drops (>1 mm) than the inland station. On the other hand, for both inland and coastal stations, small and mid-size drops (<3 mm) primarily contributed to the total number concentration and rainfall rate. The RSDs of the NIO TCs segregated into precipitation types (stratiform and convective) demonstrated the presence of more mid- and large-size drops at the coastal station. The RSD relations of the NIO TCs, which are used in rain retrieval algorithms of remote sensing (global precipitation measurement) radars, exhibited contrasts between the coastal and inland station. Further, the NIO TCs’ rainfall kinetic energy relations, which are crucial in rainfall erosivity studies, estimated for the coastal station revealed dissimilar characteristics to that of the inland station. The conceivable thermo-dynamical and microphysical processes that are accountable for the disparities in the NIO TCs RSDs measured at the coastal and inland stations are also elucidated in this work.

10 citations

Journal ArticleDOI
TL;DR: In this article, the MSMR data at 75 km resolution from the Oceansat-I have been assimilated in the National Centre for Medium Range Weather Forecasting (NCMRWF) data assimilation forecast system.
Abstract: Oceansat-1 was successfully launched by India in 1999, with two payloads, namely Multi-frequency Scanning Microwave Radiometer (MSMR) and Ocean Color Monitor (OCM) to study the biological and physical parameters of the ocean. The MSMR sensor is configured as an eight-channel radiometer using four frequencies with dual polarization. The MSMR data at 75 km resolution from the Oceansat-I have been assimilated in the National Centre for Medium Range Weather Forecasting (NCMRWF) data assimilation forecast system. The operational analysis and forecast system at NCMRWF is based on a T80L18 global spectral model and Spectral Statistical Interpolation (SSI) scheme for data analysis. The impact of the MSMR data is seen globally, however it is significant over the oceanic region where conventional data are rare. The dry-nature of the control analyses have been removed by utilizing the MSMR data. Therefore, the total precipitable water data from MSMR has been identified as a very crucial parameter in this study. The impact of surface wind speed from MSMR is to increase easterlies over the tropical Indian Ocean. Shifting of the positions of westerly troughs and ridges in the south Indian Ocean has contributed to reduction of temperature to around 30‡S.

9 citations


Authors

Showing all 179 results

NameH-indexPapersCitations
U. C. Mohanty373065501
Raghavan Krishnan371084033
Ashis K. Mitra22851645
Satya Prakash201551785
Sarat C. Kar1858876
E. N. Rajagopal1543754
A. Routray1546774
Someshwar Das1538585
M.P. Raju1319555
Nachiketa Acharya1230475
Raghavendra Ashrit1245938
Upal Saha1225328
G. R. Iyengar1129329
Sujata Pattanayak1125364
V. S. Prasad1147324
Network Information
Related Institutions (5)
National Oceanic and Atmospheric Administration
30.1K papers, 1.5M citations

83% related

National Center for Atmospheric Research
19.7K papers, 1.4M citations

83% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

83% related

Met Office
8.5K papers, 463.7K citations

82% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

80% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20232
20226
202158
202047
201940
201821