scispace - formally typeset
Search or ask a question
Institution

Netherlands Institute of Ecology

Facility
About: Netherlands Institute of Ecology is a facility organization based out in . It is known for research contribution in the topics: Biology & Environmental science. The organization has 17 authors who have published 28 publications receiving 53 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article , the authors map the molecular features of the rhizosphere microbiome as quantitative traits of a diverse hybrid population of wild and domesticated tomato and identify bacterial genes involved in metabolism of plant polysaccharides, iron, sulfur, trehalose, and vitamins, whose genetic variation associates with specific tomato QTLs.
Abstract: Microbiomes play a pivotal role in plant growth and health, but the genetic factors involved in microbiome assembly remain largely elusive. Here, we map the molecular features of the rhizosphere microbiome as quantitative traits of a diverse hybrid population of wild and domesticated tomato. Gene content analysis of prioritized tomato quantitative trait loci suggests a genetic basis for differential recruitment of various rhizobacterial lineages, including a Streptomyces-associated 6.31 Mbp region harboring tomato domestication sweeps and encoding, among others, the iron regulator FIT and the water channel aquaporin SlTIP2.3. Within metagenome-assembled genomes of root-associated Streptomyces and Cellvibrio, we identify bacterial genes involved in metabolism of plant polysaccharides, iron, sulfur, trehalose, and vitamins, whose genetic variation associates with specific tomato QTLs. By integrating 'microbiomics' and quantitative plant genetics, we pinpoint putative plant and reciprocal rhizobacterial traits underlying microbiome assembly, thereby providing a first step towards plant-microbiome breeding programs.

29 citations

Journal ArticleDOI
TL;DR: This paper showed that small and 100-fold larger bacterial populations evolve resistance to a β-lactam antibiotic by using similar numbers, but different types of mutations, causing a shift from high-rate to large-benefit mutations with increases in population size.
Abstract: Mutations with large fitness benefits and mutations occurring at high rates may both cause parallel evolution, but their contribution is predicted to depend on population size. Moreover, high-rate and large-benefit mutations may have different long-term adaptive consequences. We show that small and 100-fold larger bacterial populations evolve resistance to a β-lactam antibiotic by using similar numbers, but different types of mutations. Small populations frequently substitute similar high-rate structural variants and loss-of-function point mutations, including the deletion of a low-activity β-lactamase, and evolve modest resistance levels. Large populations more often use low-rate, large-benefit point mutations affecting the same targets, including mutations activating the β-lactamase and other gain-of-function mutations, leading to much higher resistance levels. Our results demonstrate the separation by clonal interference of mutation classes with divergent adaptive consequences, causing a shift from high-rate to large-benefit mutations with increases in population size.

21 citations

Journal ArticleDOI
11 Jan 2022-Cells
TL;DR: In this article , the effect of sperm quantity and sperm size on male reproductive success in the red-back fairy-wren (Malurus melanocephalus) while simultaneously accounting for pre-copulatory sexual selection and potential socio-ecological correlates of male mating success.
Abstract: Sperm competition is thought to impose strong selection on males to produce competitive ejaculates to outcompete rival males under competitive mating conditions. Our understanding of how different sperm traits influence fertilization success, however, remains limited, especially in wild populations. Recent literature highlights the importance of incorporating multiple ejaculate traits and pre-copulatory sexually selected traits in analyses aimed at understanding how selection acts on sperm traits. However, variation in a male's ability to gain fertilization success may also depend upon a range of social and ecological factors that determine the opportunity for mating events both within and outside of the social pair-bond. Here, we test for an effect of sperm quantity and sperm size on male reproductive success in the red-back fairy-wren (Malurus melanocephalus) while simultaneously accounting for pre-copulatory sexual selection and potential socio-ecological correlates of male mating success. We found that sperm number (i.e., cloacal protuberance volume), but not sperm morphology, was associated with reproductive success in male red-backed fairy-wrens. Most notably, males with large numbers of sperm available for copulation achieved greater within-pair paternity success. Our results suggest that males use large sperm numbers as a defensive strategy to guard within-pair paternity success in a system where there is a high risk of sperm competition and female control of copulation. Finally, our work highlights the importance of accounting for socio-ecological factors that may influence male mating opportunities when examining the role of sperm traits in determining male reproductive success.

1 citations

Journal ArticleDOI
TL;DR: In this article , the authors reported an empirical estimate of the mutation rate per base per strand copying (s/n/r) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV).
Abstract: Mutation rates are of key importance for understanding evolutionary processes and predicting their outcomes. Empirical mutation rate estimates are available for a number of RNA viruses, but few are available for DNA viruses, which tend to have larger genomes. Whilst some viruses have very high mutation rates, lower mutation rates are expected for viruses with large genomes to ensure genome integrity. Alphabaculoviruses are insect viruses with large genomes and often have high levels of polymorphism, suggesting high mutation rates despite evidence of proofreading activity by the replication machinery. Here, we report an empirical estimate of the mutation rate per base per strand copying (s/n/r) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). To avoid biases due to selection, we analyzed mutations that occurred in a stable, non-functional genomic insert after five serial passages in Spodoptera exigua larvae. Our results highlight that viral demography and the stringency of mutation calling affect mutation rate estimates, and that using a population genetic simulation model to make inferences can mitigate the impact of these processes on estimates of mutation rate. We estimated a mutation rate of μ = 1×10 −7 s/n/r when applying the most stringent criteria for mutation calling, and estimates of up to μ = 5×10 −7 s/n/r when relaxing these criteria. The rates at which different classes of mutations accumulate provide good evidence for neutrality of mutations occurring within the inserted region. We therefore present a robust approach for mutation rate estimation for viruses with stable genomes, and strong evidence of a much lower alphabaculovirus mutation rate than supposed based on the high levels of polymorphism observed.

1 citations

Journal ArticleDOI
TL;DR: In this paper , the authors analysed the adult sex ratio and proportion of juveniles in flocks of an endangered steppe bird, the Little Bustard Tetrax tetrax , using surveys made during the non-breeding period in seven areas within its Western European range (one in Portugal, four in Spain and two in France).
Abstract: Summary Adult sex ratios (ASRs) have proved to correlate with population trends, which make them potential useful indicators of a species’ population trajectory and conservation status. We analysed ASRs and proportion of juveniles in flocks of an endangered steppe bird, the Little Bustard Tetrax tetrax , using surveys made during the non-breeding period in seven areas within its Western European range (one in Portugal, four in Spain, and two in France). We found overall male-biased ASRs, as all the seven surveyed areas showed a male-biased ASR mean value. Five areas were below the threshold median value (female sex ratio = 0.4) considered to be consistent with an increased probability of extinction, according to earlier population viability analyses for the species. We also found a significant positive correlation between female ratio and the proportion of young individuals in the non-breeding flocks surveyed. Our results (strongly male-biased ASRs) support the hypothesis that the viability of Little Bustard populations in Western Europe is threatened by an excess of female mortality, something that should be quantified in the future, and emphasise the value of monitoring sex ratio as a population viability indicator in species where monitoring survival is difficult to achieve.

1 citations


Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20237
202221