scispace - formally typeset
Search or ask a question

Showing papers in "Annual Review of Astronomy and Astrophysics in 2016"


Journal ArticleDOI
TL;DR: In this paper, the authors review the key integrated, structural and kinematic parameters of the Galaxy, and point to uncertainties as well as directions for future progress, and show that the Galaxy is a luminous (L⋆) barred spiral with a central box/peanut bulge, a dominant disk, and a diffuse stellar halo.
Abstract: Our Galaxy, the Milky Way, is a benchmark for understanding disk galaxies. It is the only galaxy whose formation history can be studied using the full distribution of stars from faint dwarfs to supergiants. The oldest components provide us with unique insight into how galaxies form and evolve over billions of years. The Galaxy is a luminous (L⋆) barred spiral with a central box/peanut bulge, a dominant disk, and a diffuse stellar halo. Based on global properties, it falls in the sparsely populated “green valley” region of the galaxy color-magnitude diagram. Here we review the key integrated, structural and kinematic parameters of the Galaxy, and point to uncertainties as well as directions for future progress. Galactic studies will continue to play a fundamental role far into the future because there are measurements that can only be made in the near field and much of contemporary astrophysics depends on such observations.

1,084 citations


Journal ArticleDOI
TL;DR: In this paper, the authors summarize the current knowledge of neutron-star masses and radii and show that the distribution of neutron star masses is much wider than previously thought, with three known pulsars now firmly in the 1.9-2.0-M⊙ mass range.
Abstract: We summarize our current knowledge of neutron-star masses and radii. Recent instrumentation and computational advances have resulted in a rapid increase in the discovery rate and precise timing of radio pulsars in binaries in the past few years, leading to a large number of mass measurements. These discoveries show that the neutron-star mass distribution is much wider than previously thought, with three known pulsars now firmly in the 1.9–2.0-M⊙ mass range. For radii, large, high-quality data sets from X-ray satellites as well as significant progress in theoretical modeling led to considerable progress in the measurements, placing them in the 10–11.5-km range and shrinking their uncertainties, owing to a better understanding of the sources of systematic errors. The combination of the massive-neutron-star discoveries, the tighter radius measurements, and improved laboratory constraints of the properties of dense matter has already made a substantial impact on our understanding of the composition and bulk p...

1,082 citations


Journal ArticleDOI
TL;DR: The hierarchical triple-body approximation has useful applications to a variety of systems from planetary and stellar scales to supermassive black holes as mentioned in this paper, where the energy of each orbit is separately conserved, and therefore the two semimajor axes are constants.
Abstract: The hierarchical triple-body approximation has useful applications to a variety of systems from planetary and stellar scales to supermassive black holes. In this approximation, the energy of each orbit is separately conserved, and therefore the two semimajor axes are constants. On timescales much larger than the orbital periods, the orbits exchange angular momentum, which leads to eccentricity and orientation (i.e., inclination) oscillations. The orbits' eccentricity can reach extreme values, leading to a nearly radial motion, which can further evolve into short orbit periods and merging binaries. Furthermore, the orbits' mutual inclinations may change dramatically from pure prograde to pure retrograde, leading to misalignment and a wide range of inclinations. This dynamical behavior is coined the “eccentric Kozai-Lidov mechanism.” The behavior of such a system is exciting, rich, and chaotic in nature. Furthermore, these dynamics are accessible from a large part of the triple-body parameter space and can ...

559 citations


Journal ArticleDOI
TL;DR: The mechanisms by which protostellar and protoplanetary disks accrete onto low-mass stars are not clear; angular momentum transport by magnetic fields is thought to be involved, but the low ionization conditions in major regions of protoplanets lead to a variety of complex nonideal magnetohydrodynamic effects whose implications are not fully understood.
Abstract: Accretion through circumstellar disks plays an important role in star formation and in establishing the properties of the regions in which planets form and migrate. The mechanisms by which protostellar and protoplanetary disks accrete onto low-mass stars are not clear; angular momentum transport by magnetic fields is thought to be involved, but the low-ionization conditions in major regions of protoplanetary disks lead to a variety of complex nonideal magnetohydrodynamic effects whose implications are not fully understood. Accretion in pre-main-sequence stars of masses ≲1M⊙ (and in at least some 2–3-M⊙ systems) is generally funneled by the stellar magnetic field, which disrupts the disk at scales typically of order a few stellar radii. Matter moving at near free-fall velocities shocks at the stellar surface; the resulting accretion luminosities from the dissipation of kinetic energy indicate that mass addition during the T Tauri phase over the typical disk lifetime ∼3 Myr is modest in terms of stellar evo...

480 citations


Journal ArticleDOI
TL;DR: In this paper, the authors showed that there is a dichotomy in the dynamics of the two classes of early-type galaxies (ETGs) and showed that the two main classes, the fast and slow rotators, can be separated using stellar kinematics.
Abstract: Observations of galaxy isophotes, long-slit kinematics, and high-resolution photometry suggested a possible dichotomy between two distinct classes of elliptical galaxies. But these methods are expensive for large galaxy samples. Instead, integral field spectroscopy can efficiently recognize the shape, dynamics, and stellar population of complete samples of early-type galaxies (ETGs). These studies showed that the two main classes, the fast and slow rotators, can be separated using stellar kinematics. I show that there is a dichotomy in the dynamics of the two classes. The slow rotators are weakly triaxial and dominate above . Below Mcrit, the structure of fast rotators parallels that of spiral galaxies. There is a smooth sequence along which the age, the metal content, the enhancement in α-elements, and the weight of the stellar initial mass function all increase with the central mass density slope, or bulge mass fraction, while the molecular gas fraction correspondingly decreases. The properties of ETGs ...

344 citations


Journal ArticleDOI
TL;DR: A review of the role of gravity in the formation of star and planet formation is presented in this article, with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and a survey of numerical simulations that aim to capture the nonlinear evolution.
Abstract: Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predic...

310 citations


Journal ArticleDOI
TL;DR: In this article, the authors review the theoretical models and measurements that form the basis for the modern understanding of the intergalactic medium, and discuss unsolved puzzles (ranging from the largely unconstrained process of reionization at high z to the missing baryon problem at low z), highlighting the efforts that have the potential to solve them.
Abstract: The bulk of cosmic matter resides in a dilute reservoir that fills the space between galaxies, the intergalactic medium (IGM). The history of this reservoir is intimately tied to the cosmic histories of structure formation, star formation, and supermassive black hole accretion. Our models for the IGM at intermediate redshifts (2≲z≲5) are a tremendous success, quantitatively explaining the statistics of Lyα absorption of intergalactic hydrogen. However, at both lower and higher redshifts (and around galaxies) much is still unknown about the IGM. We review the theoretical models and measurements that form the basis for the modern understanding of the IGM, and we discuss unsolved puzzles (ranging from the largely unconstrained process of reionization at high z to the missing baryon problem at low z), highlighting the efforts that have the potential to solve them.

268 citations


Journal ArticleDOI
TL;DR: In the past five years, deep imaging campaigns conducted with the Hubble Space Telescope (HST) and ground-based observatories have delivered large samples of galaxies at 6.5 6 UV-selected galaxies are relatively compact with blue UV continuum slopes, low stellar masses, and large specific star formation rates.
Abstract: In the past five years, deep imaging campaigns conducted with the Hubble Space Telescope (HST) and ground-based observatories have delivered large samples of galaxies at 6.5 6 UV-selected galaxies are relatively compact with blue UV continuum slopes, low stellar masses, and large specific star formation rates. In the last year, ALMA (the Atacama Large Millimeter Array) and ground-based infrared spectrographs have begun to complement this picture, revealing minimal dust obscuration and hard radiation fields, and prov...

246 citations


Journal ArticleDOI
TL;DR: In this paper, the search for the curl component (B mode) in the cosmic microwave background (CMB) polarization induced by inflationary gravitational waves is described, and issues involved in the experimental pursuit of these B modes are described.
Abstract: The search for the curl component (B mode) in the cosmic microwave background (CMB) polarization induced by inflationary gravitational waves is described. The canonical single-field slow-roll model of inflation is presented, and we explain the quantum production of primordial density perturbations and gravitational waves. It is shown how these gravitational waves then give rise to polarization in the CMB. We then describe the geometric decomposition of the CMB polarization pattern into a curl-free component (E mode) and curl component (B mode) and show explicitly that gravitational waves induce B modes. We discuss the B modes induced by gravitational lensing and by Galactic foregrounds and show how both are distinguished from those induced by inflationary gravitational waves. Issues involved in the experimental pursuit of these B modes are described, and we summarize some of the strategies being pursued. We close with a brief discussion of some other avenues toward detecting/characterizing the inflationar...

205 citations


Journal ArticleDOI
TL;DR: In this article, the authors discuss the reasons for the red clump narrowness in several sets of observational data, its fine structure, and the presence of systematic changes in the RC properties as regards age, metallicity, and observed passband.
Abstract: Low-mass stars in their core-helium-burning stage define the sharpest feature present in the color-magnitude diagrams of nearby galaxy systems: the red clump (RC). This feature has given rise to a series of methods aimed at measuring the distributions of stellar distances and extinctions, especially in the Magellanic Clouds and Milky Way Bulge. Because the RC is easily recognizable within the data of large spectroscopic and asteroseismic surveys, it is a useful probe of stellar densities, kinematics, and chemical abundances across the Milky Way disk; it can be applied up to larger distances than that allowed by dwarfs; and it has better accuracy than is possible with other kinds of giants. Here, we discuss the reasons for the RC narrowness in several sets of observational data, its fine structure, and the presence of systematic changes in the RC properties as regards age, metallicity, and the observed passband. These factors set the limits on the validity and accuracy of several RC methods defined in the ...

203 citations


Journal ArticleDOI
TL;DR: The Magellanic Stream as mentioned in this paper is an interwoven tail of filaments trailing the clouds in their orbit around the Milky Way, and it is a benchmark for hydrodynamical simulations of accreting gas and cloud/corona interactions.
Abstract: The Magellanic Clouds are surrounded by an extended network of gaseous structures. Chief among these is the Magellanic Stream, an interwoven tail of filaments trailing the Clouds in their orbit around the Milky Way. When considered in tandem with its Leading Arm, the Stream stretches over 200° on the sky. The Stream is thought to represent the result of tidal interactions between the Clouds and ram-pressure forces exerted by the Galactic corona, and its kinematic properties reflect the dynamical history of the pair of dwarf galaxies closest to the Milky Way. The Stream is a benchmark for hydrodynamical simulations of accreting gas and cloud/corona interactions. If the Stream survives these interactions and arrives safely in the Galactic disk, its cargo of over a billion solar masses of gas has the potential to maintain or elevate the Galactic star-formation rate. In this article, we review the current state of knowledge of the Stream, including its chemical composition, physical conditions, origin, and fa...

Journal ArticleDOI
TL;DR: The most numerous discrete extragalactic γ-ray sources are AGNs dominated by relativistic jets pointing in our direction (commonly known as blazars), and they are the main subject of the review.
Abstract: This article reviews the recent observational results regarding γ-ray emission from active galaxies. The most numerous discrete extragalactic γ-ray sources are AGNs dominated by relativistic jets pointing in our direction (commonly known as blazars), and they are the main subject of the review. They are detected in all observable energy bands and are highly variable. The advent of the sensitive γ-ray observations, afforded by the launch and continuing operation of the Fermi Gamma-ray Space Telescope and the AGILE Gamma-ray Imaging Detector, as well as by the deployment of current-generation Air Cerenkov Telescope arrays such as VERITAS, MAGIC, and HESS-II, continually provides sensitive γ-ray data over the energy range of ∼100 MeV to multi-TeV. Importantly, it has motivated simultaneous, monitoring observations in other bands, resulting in unprecedented time-resolved broadband spectral coverage. After an introduction, in Sections 3, 4, and 5, we cover the current status and highlights of γ-ray observation...

Journal ArticleDOI
TL;DR: The theory of spiral density waves had its origin approximately six decades ago in an attempt to reconcile the winding dilemma of material spiral arms in flattened disk galaxies as discussed by the authors, in which the hypothesis of quasi-stationary spiral structure (QSSS) plays a central role.
Abstract: The theory of spiral density waves had its origin approximately six decades ago in an attempt to reconcile the winding dilemma of material spiral arms in flattened disk galaxies. We begin with the earliest calculations of linear and nonlinear spiral density waves in disk galaxies, in which the hypothesis of quasi-stationary spiral structure (QSSS) plays a central role. The earliest success was the prediction of the nonlinear compression of the interstellar medium and its embedded magnetic field; the earliest failure, seemingly, was not detecting color gradients associated with the migration of OB stars whose formation is triggered downstream from the spiral shock front. We give the reasons for this apparent failure with an update on the current status of the problem of OB star formation, including its relationship to the feathering substructure of galactic spiral arms. Infrared images can show two-armed, grand design spirals, even when the optical and UV images show flocculent structures. We suggest how t...

Journal ArticleDOI
TL;DR: In this article, meteorites, interplanetary dust, and spacecraft-returned asteroidal and cometary samples provide a record of the starting materials and early evolution of the Solar System.
Abstract: Extraterrestrial materials, including meteorites, interplanetary dust, and spacecraft-returned asteroidal and cometary samples, provide a record of the starting materials and early evolution of the Solar System. We review how laboratory analyses of these materials provide unique information, complementary to astronomical observations, about a wide variety of stellar, interstellar and protoplanetary processes. Presolar stardust grains retain the isotopic compositions of their stellar sources, mainly asymptotic giant branch stars and Type II supernovae. They serve as direct probes of nucleosynthetic and dust formation processes in stars, galactic chemical evolution, and interstellar dust processing. Extinct radioactivities suggest that the Sun's birth environment was decoupled from average galactic nucleosynthesis for some tens to hundreds of Myr but was enriched in short-lived isotopes from massive stellar winds or explosions shortly before or during formation of the Solar System. Radiometric dating of met...

Journal ArticleDOI
TL;DR: Although it has faded by a factor of ∼107, SN 1987A is still bright enough to be observed in almost every band of the electromagnetic spectrum as mentioned in this paper, and its luminosity is dominated by a far-infrared (∼200μm) continuum from ∼0.5 M⊙ of dust grains in the interior debris.
Abstract: Although it has faded by a factor of ∼107, SN 1987A is still bright enough to be observed in almost every band of the electromagnetic spectrum. Today, the bolometric luminosity of the debris is dominated by a far-infrared (∼200μm) continuum from ∼0.5 M⊙ of dust grains in the interior debris. The dust is heated by UV, optical, and near-infrared (NIR) emission resulting from radioactive energy deposition by 44Ti. The optical light of the supernova debris is now dominated by illumination of the debris by X-rays resulting from the impact of the outer supernova envelope with an equatorial ring (ER) of gas that was expelled some 20,000 years before the supernova explosion. X-ray and optical observations trace a complex system of shocks resulting from this impact, whereas radio observations trace synchrotron radiation from relativistic electrons accelerated by these shocks. The luminosity of the remnant is dominated by an NIR (∼20μm) continuum from dust grains in the ER heated by collisions with ions in the X-ra...

Journal ArticleDOI
TL;DR: In the field of theoretical astrophysics, a half-century of unparalleled observational discovery has been described in this paper, including the discovery of quasars, pulsars, large-scale cosmic structure, galaxy evolution, and many other phenomena using new observational techniques.
Abstract: The author has had the happy opportunity to work and study in the field of theoretical astrophysics during a half-century of unparalleled observational discovery. Quasars, pulsars, large-scale cosmic structure, galaxy evolution, and many other phenomena were discovered using revolutionary new observational techniques. In the same period of time, analytical tools ranging from new disciplines like plasma physics to enormously enhanced computational facilities became available, giving theoreticians the machinery to make some sense of this new world. At the start of the era the extragalactic world was largely framed as a quasi-homogeneous Universe of static galaxies formed by unknown and in fact unexamined processes. By the end of the period there was widespread acceptance of a self-consistent, evolving cosmological model amenable to calculation and comprehension. The author was fortunate indeed to have had the chance to collaborate with many wonderfully talented colleagues during this exciting time, attempti...