scispace - formally typeset
Search or ask a question

Showing papers in "Archives of Computational Methods in Engineering in 2023"


Journal ArticleDOI
TL;DR: A comprehensive survey on quantifying mental health on social media can be found in this paper , where the authors define all the possible research directions for mental healthcare and investigate a thread of handling online social media data for stress, depression and suicide detection for this work.
Abstract: The surge in internet use to express personal thoughts and beliefs makes it increasingly feasible for the social NLP research community to find and validate associations between social media posts and mental health status. Cross-sectional and longitudinal studies of social media data bring to fore the importance of real-time responsible AI models for mental health analysis. Aiming to classify the research directions for social computing and tracking advances in the development of machine learning (ML) and deep learning (DL) based models, we propose a comprehensive survey on quantifying mental health on social media. We compose a taxonomy for mental healthcare and highlight recent attempts in examining social well-being with personal writings on social media. We define all the possible research directions for mental healthcare and investigate a thread of handling online social media data for stress, depression and suicide detection for this work. The key features of this manuscript are (i) feature extraction and classification, (ii) recent advancements in AI models, (iii) publicly available dataset, (iv) new frontiers and future research directions. We compile this information to introduce young research and academic practitioners with the field of computational intelligence for mental health analysis on social media. In this manuscript, we carry out a quantitative synthesis and a qualitative review with the corpus of over 92 potential research articles. In this context, we release the collection of existing work on suicide detection in an easily accessible and updatable repository:https://github.com/drmuskangarg/mentalhealthcare.

9 citations


Journal ArticleDOI
TL;DR: Marine Predators Algorithm (MPA) is the existing population-based meta-heuristic algorithm that falls under the category of Nature-Inspired Optimization Algorithm as mentioned in this paper .
Abstract: Marine Predators Algorithm (MPA) is the existing population-based meta-heuristic algorithms that falls under the category of Nature-Inspired Optimization Algorithm (NIOA) enthused by the foraging actions of the marine predators that principally pursues Levy or Brownian approach as its foraging strategy. Furthermore, it employs the optimal encounter rate stratagem involving both the predator as well as prey. Since its introduction by Faramarzi in the year 2020, MPA has gained enormous popularity and has been employed in numerous application areas ranging from Mathematical and Engineering Optimization problems to Fog Computing to Image Processing to Photovoltaic System to Wind-Solar Generation System for resolving continuous optimization problems. Such huge interest from the research fraternity or the massive recognition of MPA is due to several factors such as its simplicity, ease of application, realistic execution time, superior convergence acceleration rate, soaring effectiveness, its ability to unravel continuous, multi-objective and binary problems when compared with other renowned optimization algorithms existing in the literature. This paper offers a detailed summary of the Marine Predators Algorithm (MPA) and its variants. Furthermore, the applications of MPA in a number of spheres such as Image processing, classification, electrical power system, Photovoltaic models, structural damage detection, distribution networks, engineering applications, Task Scheduling, optimization problems etc., are illustrated. To conclude, the paper highlights and thereby advocates few of the potential future research directions for MPA.

6 citations


Journal ArticleDOI
TL;DR: SelfSelf-Supervised Learning (SSL) as discussed by the authors is a type of unsupervised learning that helps in the performance of downstream computer vision tasks such as object detection, image comprehension, image segmentation, and so on.
Abstract: Machine learning has made significant advances in the field of image processing. The foundation of this success is supervised learning, which necessitates annotated labels generated by humans and hence learns from labelled data, whereas unsupervised learning learns from unlabeled data. Self-supervised learning (SSL) is a type of un-supervised learning that helps in the performance of downstream computer vision tasks such as object detection, image comprehension, image segmentation, and so on. It can develop generic artificial intelligence systems at a low cost using unstructured and unlabeled data. The authors of this review article have presented detailed literature on self-supervised learning as well as its applications in different domains. The primary goal of this review article is to demonstrate how images learn from their visual features using self-supervised approaches. The authors have also discussed various terms used in self-supervised learning as well as different types of learning, such as contrastive learning, transfer learning, and so on. This review article describes in detail the pipeline of self-supervised learning, including its two main phases: pretext and downstream tasks. The authors have shed light on various challenges encountered while working on self-supervised learning at the end of the article.

6 citations


Journal ArticleDOI
TL;DR: The Slime Mould Algorithm (SMA) as mentioned in this paper is a meta-heuristic algorithm based on the fluctuating behavior of slime mold in nature, which has several new features with a unique mathematical model using adaptive weights to simulate the biological wave.
Abstract: Meta-heuristic algorithms have a high position among academic researchers in various fields, such as science and engineering, in solving optimization problems. These algorithms can provide the most optimal solutions for optimization problems. This paper investigates a new meta-heuristic algorithm called Slime Mould algorithm (SMA) from different optimization aspects. The SMA algorithm was invented due to the fluctuating behavior of slime mold in nature. It has several new features with a unique mathematical model that uses adaptive weights to simulate the biological wave. It provides an optimal pathway for connecting food with high exploration and exploitation ability. As of 2020, many types of research based on SMA have been published in various scientific databases, including IEEE, Elsevier, Springer, Wiley, Tandfonline, MDPI, etc. In this paper, based on SMA, four areas of hybridization, progress, changes, and optimization are covered. The rate of using SMA in the mentioned areas is 15, 36, 7, and 42%, respectively. According to the findings, it can be claimed that SMA has been repeatedly used in solving optimization problems. As a result, it is anticipated that this paper will be beneficial for engineers, professionals, and academic scientists.

6 citations


Journal ArticleDOI
TL;DR: A comprehensive and comparative analysis of the existing Machine Learning (ML), Deep Learning (DL) and Artificial Intelligence (AI) based approaches used in significance in reacting to the COVID-19 epidemic and diagnosing the severe impacts is presented in this paper .
Abstract: The absolute previously infected novel coronavirus (COVID-19) was found in Wuhan, China, in December 2019. The COVID-19 epidemic has spread to more than 220 nations and territories globally and has altogether influenced each part of our day-to-day lives. As of 9th March 2022, a total aggregate of 44,78,82,185 (60,07,317) contaminated (dead) COVID-19 cases were accounted for all over the world. The quantities of contaminated cases passing despite everything increment essentially and do not indicate a controlled circumstance. The scope of this paper is to address this issue by presenting a comprehensive and comparative analysis of the existing Machine Learning (ML), Deep Learning (DL) and Artificial Intelligence (AI) based approaches used in significance in reacting to the COVID-19 epidemic and diagnosing the severe impacts. The paper provides, firstly, an overview of COVID-19 infection and highlights of this article; Secondly, an overview of exploring various executive innovations by utilizing different resources to stop the spread of COVID-19; Thirdly, a comparison of existing predicting methods of COVID-19 in the literature, with focus on ML, DL and AI-driven techniques with performance metrics; and finally, a discussion on the results of the work as well as future scope.

5 citations


Journal ArticleDOI
TL;DR: In this paper , an overview of suitable hyperelastic models to reproduce the isochoric as well as volumetric behavior of nine widely used rubber compounds is provided, which can be used as a guideline for the process of experimental characterization, data processing, model selection and parameter identification.
Abstract: Abstract Hyperelasticity is a common modeling approach to reproduce the nonlinear mechanical behavior of rubber materials at finite deformations. It is not only employed for stand-alone, purely elastic models but also within more sophisticated frameworks like viscoelasticity or Mullins-type softening. The choice of an appropriate strain energy function and identification of its parameters is of particular importance for reliable simulations of rubber products. The present manuscript provides an overview of suitable hyperelastic models to reproduce the isochoric as well as volumetric behavior of nine widely used rubber compounds. This necessitates firstly a discussion on the careful preparation of the experimental data. More specific, procedures are proposed to properly treat the preload in tensile and compression tests as well as to proof the consistency of experimental data from multiple experiments. Moreover, feasible formulations of the cost function for the parameter identification in terms of the stress measure, error type as well as order of the residual norm are studied and their effect on the fitting results is illustrated. After these preliminaries, invariant-based strain energy functions with decoupled dependencies on all three principal invariants are employed to identify promising models for each compound. Especially, appropriate parameter constraints are discussed and the role of the second invariant is analyzed. Thus, this contribution may serve as a guideline for the process of experimental characterization, data processing, model selection and parameter identification for existing as well as new materials.

5 citations





Journal ArticleDOI
TL;DR: In this paper , the Archimedes Optimization Algorithm (AOA) has been discussed in great detail, and also its performance was examined for multi-level thresholding (MLT) based image segmentation domain by considering t-entropy and Tsallis entropy as objective functions.
Abstract: The intricacy of the real-world numerical optimization tribulations has full-fledged and diversely amplified necessitating proficient yet ingenious optimization algorithms. In the domain wherein the classical approaches fall short, the predicament resolving nature-inspired optimization algorithms (NIOA) tend to hit upon an excellent solution to unbendable optimization problems consuming sensible computation time. Nevertheless, in the last few years approaches anchored in nonlinear physics have been anticipated, announced, and flourished. The process based on non-linear physics modeled in the form of optimization algorithms and as a subset of NIOA, in countless cases, has successfully surpassed the existing optimization methods with their effectual exploration knack thus formulating utterly fresh search practices. Archimedes Optimization Algorithm (AOA) is one of the recent and most promising physics optimization algorithms that use meta-heuristics phenomenon to solve real-world problems by either maximizing or minimizing a variety of measurable variables such as performance, profit, and quality. In this paper, Archimedes Optimization Algorithm (AOA) has been discussed in great detail, and also its performance was examined for Multi-Level Thresholding (MLT) based image segmentation domain by considering t-entropy and Tsallis entropy as objective functions. The experimental results showed that among recent Physics Inspired Optimization Algorithms (PIOA), the Archimedes Optimization Algorithm (AOA) produces very promising outcomes with Tsallis entropy rather than with t-entropy in both color standard images and medical pathology images.

4 citations







Journal ArticleDOI
TL;DR: Image-Based Simulation (IBSim) is the process by which a digital representation of a real geometry is generated from image data for the purpose of performing a simulation with greater accuracy than with idealised Computer Aided Design (CAD) based simulations as mentioned in this paper .
Abstract: Image-Based Simulation (IBSim) is the process by which a digital representation of a real geometry is generated from image data for the purpose of performing a simulation with greater accuracy than with idealised Computer Aided Design (CAD) based simulations. Whilst IBSim originates in the biomedical field, the wider adoption of imaging for non-destructive testing and evaluation (NDT/NDE) within the High-Value Manufacturing (HVM) sector has allowed wider use of IBSim in recent years. IBSim is invaluable in scenarios where there exists a non-negligible variation between the 'as designed' and 'as manufactured' state of parts. It has also been used for characterisation of geometries too complex to accurately draw with CAD. IBSim simulations are unique to the geometry being imaged, therefore it is possible to perform part-specific virtual testing within batches of manufactured parts. This novel review presents the applications of IBSim within HVM, whereby HVM is the value provided by a manufactured part (or conversely the potential cost should the part fail) rather than the actual cost of manufacturing the part itself. Examples include fibre and aggregate composite materials, additive manufacturing, foams, and interface bonding such as welding. This review is divided into the following sections: Material Characterisation; Characterisation of Manufacturing Techniques; Impact of Deviations from Idealised Design Geometry on Product Design and Performance; Customisation and Personalisation of Products; IBSim in Biomimicry. Finally, conclusions are drawn, and observations made on future trends based on the current state of the literature.

Journal ArticleDOI
TL;DR: Symbolic regression (SR) as discussed by the authors is a machine learning-based regression method based on genetic programming principles that integrates techniques and processes from heterogeneous scientific fields and is capable of providing analytical equations purely from data.
Abstract: Symbolic regression (SR) is a machine learning-based regression method based on genetic programming principles that integrates techniques and processes from heterogeneous scientific fields and is capable of providing analytical equations purely from data. This remarkable characteristic diminishes the need to incorporate prior knowledge about the investigated system. SR can spot profound and elucidate ambiguous relations that can be generalizable, applicable, explainable and span over most scientific, technological, economical, and social principles. In this review, current state of the art is documented, technical and physical characteristics of SR are presented, the available programming techniques are investigated, fields of application are explored, and future perspectives are discussed.The online version contains supplementary material available at 10.1007/s11831-023-09922-z.

Journal ArticleDOI
TL;DR: In this article , the generalized Broyden framework is used to compare the performance of IQN-ILS, ILS, IBQN-LS, MVQN, IQNIMVLS, IMVLS and IQNILSM.
Abstract: Abstract Fluid–structure interaction simulations can be performed in a partitioned way, by coupling a flow solver with a structural solver. However, Gauss–Seidel iterations between these solvers without additional stabilization efforts will converge slowly or not at all under common conditions such as an incompressible fluid and a high added mass. Quasi-Newton methods can then stabilize and accelerate the coupling iterations, while still using the solvers as black boxes and only accessing data at the fluid–structure interface. In this review, the IQN-ILS, IQN-MVJ, IBQN-LS, MVQN, IQN-IMVLS and IQN-ILSM methods are reformulated in the generalized Broyden framework to illustrate their similarities and differences. Also related coupling techniques are reviewed and a performance comparison is provided where available.

Journal ArticleDOI
TL;DR: In this paper , the authors presented a detailed study on non-Newtonian viscosity functions for elastomers and brain tissues, which were paired with several commonly used free energy functions.
Abstract: Abstract In many aspects, elastomers and soft biological tissues exhibit similar mechanical properties such as a pronounced nonlinear stress–strain relation and a viscoelastic response to external loads. Consequently, many models use the same rheological framework and material functions to capture their behavior. The viscosity function is thereby often assumed to be constant and the corresponding free energy function follows that one of the long-term equilibrium response. This work questions this assumption and presents a detailed study on non-Newtonian viscosity functions for elastomers and brain tissues. The viscosity functions are paired with several commonly used free energy functions and fitted to two different types of elastomers and brain tissues in cyclic and relaxation experiments, respectively. Having identified suitable viscosity and free energy functions for the different materials, numerical aspects of viscoelasticity are addressed. From the multiplicative decomposition of the deformation gradient and ensuring a non-negative dissipation rate, four equivalent viscoelasticity formulations are derived that employ different internal variables. Using an implicit exponential map as time integration scheme, the numerical behavior of these four formulations are compared among each other and numerically robust candidates are identified. The fitting results demonstrate that non-Newtonian viscosity functions significantly enhance the fitting quality. It is shown that the choice of a viscosity function is even more important than the choice of a free energy function and the classical neo-Hooke approach is often a sufficient choice. Furthermore, the numerical investigations suggest the superiority of two of the four viscoelasticity formulations, especially when complex finite element simulations are to be conducted.


Journal ArticleDOI
TL;DR: Arithmetic Optimization Algorithm (AOA) is a recently developed population-based nature-inspired optimization algorithm (NIOA) as mentioned in this paper , which is designed under the inspiration of the distribution behavior of the main arithmetic operators in mathematics.
Abstract: Arithmetic Optimization Algorithm (AOA) is a recently developed population-based nature-inspired optimization algorithm (NIOA). AOA is designed under the inspiration of the distribution behavior of the main arithmetic operators in mathematics and hence, it also belongs to mathematics-inspired optimization algorithm (MIOA). MIOA is a powerful subset of NIOA and AOA is a proficient member of it. AOA is published in early 2021 and got a massive recognition from research fraternity due to its superior efficacy in different optimization fields. Therefore, this study presents an up-to-date survey on AOA, its variants, and applications.

Journal ArticleDOI
TL;DR: Marine Predators Algorithm (MPA) is a recent nature-inspired optimizer stemmed from widespread foraging mechanisms based on Lévy and Brownian movements in ocean predators as mentioned in this paper .
Abstract: Marine Predators Algorithm (MPA) is a recent nature-inspired optimizer stemmed from widespread foraging mechanisms based on Lévy and Brownian movements in ocean predators. Due to its superb features, such as derivative-free, parameter-less, easy-to-use, flexible, and simplicity, MPA is quickly evolved for a wide range of optimization problems in a short period. Therefore, its impressive characteristics inspire this review to analyze and discuss the primary MPA research studies established. In this review paper, the growth of the MPA is analyzed based on 102 research papers to show its powerful performance. The MPA inspirations and its theoretical concepts are also illustrated, focusing on its convergence behaviour. Thereafter, the MPA versions suggested improving the MPA behaviour on connecting the search space shape of real-world optimization problems are analyzed. A plethora and diverse optimization applications have been addressed, relying on MPA as the main solver, which is also described and organized. In addition, a critical discussion about the convergence behaviour and the main limitation of MPA is given. The review is end-up highlighting the main findings of this survey and suggests some possible MPA-related improvements and extensions that can be carried out in the future.



Journal ArticleDOI
TL;DR: A review of the latest versions and applications of sparrow search algorithm (SSA) can be found in this paper , where the main variations of SSA are produced to avoid premature convergence and to boost the diversity aspects.
Abstract: This paper reviews the latest versions and applications of sparrow search algorithm (SSA). It is a recent swarm-based algorithm proposed in 2020 rapidly grew due to its simple and optimistic features. SSA is inspired by the sparrow living style of foraging and the anti-predation behavior of sparrows. Since its establishment, it has been utilized for a plethora of optimization problems in different research topics, such as mechanical engineering, electrical engineering, civil engineering, power systems, industrial engineering, image processing, networking, environment, robotics, planing and scheduling, and healthcare. Initially, the growth of SSA and its theoretical features are highlighted in terms of the number of published articles, citations, topics covered, etc. After that, the different extended versions of SSA are reviewed, where the main variations of SSA are produced to avoid premature convergence and to boost the diversity aspects. These extended versions are modifications and hybridization summarized with more focus on the motivations behind establishing these versions. Multi-objective SSA is also presented as another version to deal with Multi-objective optimization problems. The critical analysis of the main research gaps in the convergence behaviour of SSA is discussed. Finally, the conclusion and the possible future expansions are recommended based on the research works accomplished in the literature.





Journal ArticleDOI
TL;DR: In this paper , a review of physics-informed neural networks (PINN) for solving stiff-PDEs is presented, where the authors take two heat conduction problems (2D and 3D) with a discontinuous solution at corners as test cases.
Abstract: Abstract In recent years, physics-informed neural networks (PINN) have been used to solve stiff-PDEs mostly in the 1D and 2D spatial domain. PINNs still experience issues solving 3D problems, especially, problems with conflicting boundary conditions at adjacent edges and corners. These problems have discontinuous solutions at edges and corners that are difficult to learn for neural networks with a continuous activation function. In this review paper, we have investigated various PINN frameworks that are designed to solve stiff-PDEs. We took two heat conduction problems (2D and 3D) with a discontinuous solution at corners as test cases. We investigated these problems with a number of PINN frameworks, discussed and analysed the results against the FEM solution. It appears that PINNs provide a more general platform for parameterisation compared to conventional solvers. Thus, we have investigated the 2D heat conduction problem with parametric conductivity and geometry separately. We also discuss the challenges associated with PINNs and identify areas for further investigation.