scispace - formally typeset
Search or ask a question
JournalISSN: 0273-0979

Bulletin of the American Mathematical Society 

American Mathematical Society
About: Bulletin of the American Mathematical Society is an academic journal published by American Mathematical Society. The journal publishes majorly in the area(s): Differential equation & Stochastic partial differential equation. It has an ISSN identifier of 0273-0979. It is also open access. Over the lifetime, 8699 publications have been published receiving 251181 citations. The journal is also known as: Bull., New Ser., Am. Math. Soc. & Bulletin of the American Mathematical Society. New series.


Papers
More filters
Journal ArticleDOI
TL;DR: The notion of viscosity solutions of scalar fully nonlinear partial differential equations of second order provides a framework in which startling comparison and uniqueness theorems, existence theorem, and continuous dependence may now be proved by very efficient and striking arguments as discussed by the authors.
Abstract: The notion of viscosity solutions of scalar fully nonlinear partial differential equations of second order provides a framework in which startling comparison and uniqueness theorems, existence theorems, and theorems about continuous dependence may now be proved by very efficient and striking arguments. The range of important applications of these results is enormous. This article is a self-contained exposition of the basic theory of viscosity solutions

5,267 citations

Book ChapterDOI
TL;DR: A survey article on the area of global analysis defined by differentiable dynamical systems or equivalently the action (differentiable) of a Lie group G on a manifold M is presented in this paper.
Abstract: This is a survey article on the area of global analysis defined by differentiable dynamical systems or equivalently the action (differentiable) of a Lie group G on a manifold M. An action is a homomorphism G→Diff(M) such that the induced map G×M→M is differentiable. Here Diff(M) is the group of all diffeomorphisms of M and a diffeo- morphism is a differentiable map with a differentiable inverse. Everything will be discussed here from the C ∞ or C r point of view. All manifolds maps, etc. will be differentiable (C r , 1 ≦ r ≦ ∞) unless stated otherwise.

2,954 citations

Journal ArticleDOI
TL;DR: This paper will discuss how geometry and topology can be applied to make useful contributions to the analysis of various kinds of data, particularly high throughput data from microarray or other sources.
Abstract: An important feature of modern science and engineering is that data of various kinds is being produced at an unprecedented rate This is so in part because of new experimental methods, and in part because of the increase in the availability of high powered computing technology It is also clear that the nature of the data we are obtaining is significantly different For example, it is now often the case that we are given data in the form of very long vectors, where all but a few of the coordinates turn out to be irrelevant to the questions of interest, and further that we don’t necessarily know which coordinates are the interesting ones A related fact is that the data is often very high-dimensional, which severely restricts our ability to visualize it The data obtained is also often much noisier than in the past and has more missing information (missing data) This is particularly so in the case of biological data, particularly high throughput data from microarray or other sources Our ability to analyze this data, both in terms of quantity and the nature of the data, is clearly not keeping pace with the data being produced In this paper, we will discuss how geometry and topology can be applied to make useful contributions to the analysis of various kinds of data Geometry and topology are very natural tools to apply in this direction, since geometry can be regarded as the study of distance functions, and what one often works with are distance functions on large finite sets of data The mathematical formalism which has been developed for incorporating geometric and topological techniques deals with point clouds, ie finite sets of points equipped with a distance function It then adapts tools from the various branches of geometry to the study of point clouds The point clouds are intended to be thought of as finite samples taken from a geometric object, perhaps with noise Here are some of the key points which come up when applying these geometric methods to data analysis • Qualitative information is needed: One important goal of data analysis is to allow the user to obtain knowledge about the data, ie to understand how it is organized on a large scale For example, if we imagine that we are looking at a data set constructed somehow from diabetes patients, it would be important to develop the understanding that there are two types of the disease, namely the juvenile and adult onset forms Once that is established, one of course wants to develop quantitative methods for distinguishing them, but the first insight about the distinct forms of the disease is key

2,203 citations

Journal ArticleDOI
TL;DR: Expander graphs were first defined by Bassalygo and Pinsker in the early 1970s, and their existence was proved in the late 1970s as discussed by the authors and early 1980s.
Abstract: A major consideration we had in writing this survey was to make it accessible to mathematicians as well as to computer scientists, since expander graphs, the protagonists of our story, come up in numerous and often surprising contexts in both fields But, perhaps, we should start with a few words about graphs in general They are, of course, one of the prime objects of study in Discrete Mathematics However, graphs are among the most ubiquitous models of both natural and human-made structures In the natural and social sciences they model relations among species, societies, companies, etc In computer science, they represent networks of communication, data organization, computational devices as well as the flow of computation, and more In mathematics, Cayley graphs are useful in Group Theory Graphs carry a natural metric and are therefore useful in Geometry, and though they are “just” one-dimensional complexes, they are useful in certain parts of Topology, eg Knot Theory In statistical physics, graphs can represent local connections between interacting parts of a system, as well as the dynamics of a physical process on such systems The study of these models calls, then, for the comprehension of the significant structural properties of the relevant graphs But are there nontrivial structural properties which are universally important? Expansion of a graph requires that it is simultaneously sparse and highly connected Expander graphs were first defined by Bassalygo and Pinsker, and their existence first proved by Pinsker in the early ’70s The property of being an expander seems significant in many of these mathematical, computational and physical contexts It is not surprising that expanders are useful in the design and analysis of communication networks What is less obvious is that expanders have surprising utility in other computational settings such as in the theory of error correcting codes and the theory of pseudorandomness In mathematics, we will encounter eg their role in the study of metric embeddings, and in particular in work around the Baum-Connes Conjecture Expansion is closely related to the convergence rates of Markov Chains, and so they play a key role in the study of Monte-Carlo algorithms in statistical mechanics and in a host of practical computational applications The list of such interesting and fruitful connections goes on and on with so many applications we will not even

2,037 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20221
202118
202015
201913
201835
201717