•Journal•ISSN: 0273-0979

# Bulletin of the American Mathematical Society

About: Bulletin of the American Mathematical Society is an academic journal. The journal publishes majorly in the area(s): Differential equation & Stochastic partial differential equation. It has an ISSN identifier of 0273-0979. It is also open access. Over the lifetime, 8698 publication(s) have been published receiving 236828 citation(s). The journal is also known as: Bull., New Ser., Am. Math. Soc. & Bulletin of the American Mathematical Society. New series.

Topics: Differential equation, Stochastic partial differential equation, Brouwer fixed-point theorem, Function field of an algebraic variety, Homotopy

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: The notion of viscosity solutions of scalar fully nonlinear partial differential equations of second order provides a framework in which startling comparison and uniqueness theorems, existence theorem, and continuous dependence may now be proved by very efficient and striking arguments as discussed by the authors.

Abstract: The notion of viscosity solutions of scalar fully nonlinear partial differential equations of second order provides a framework in which startling comparison and uniqueness theorems, existence theorems, and theorems about continuous dependence may now be proved by very efficient and striking arguments. The range of important applications of these results is enormous. This article is a self-contained exposition of the basic theory of viscosity solutions

4,888 citations

••

TL;DR: A survey article on the area of global analysis defined by differentiable dynamical systems or equivalently the action (differentiable) of a Lie group G on a manifold M is presented in this paper.

Abstract: This is a survey article on the area of global analysis defined by differentiable dynamical systems or equivalently the action (differentiable) of a Lie group G on a manifold M. An action is a homomorphism G→Diff(M) such that the induced map G×M→M is differentiable. Here Diff(M) is the group of all diffeomorphisms of M and a diffeo- morphism is a differentiable map with a differentiable inverse. Everything will be discussed here from the C ∞ or C r point of view. All manifolds maps, etc. will be differentiable (C r , 1 ≦ r ≦ ∞) unless stated otherwise.

2,837 citations

••

1,905 citations

••

TL;DR: In this paper, the relation of the structure of an R set to its degree is discussed, and the infinite injury priority method is proposed to solve the problem of scaling and splitting R sets.

Abstract: TABLE OF CONTENTS Introduction Chapter I. The relation of the structure of an r.e. set to its degree. 1. Post's program and simple sets. 2. Dominating functions and quotient lattices. 3. Maximal sets and high degrees. 4. Low degrees, atomless sets, and invariant degree classes. 5. Incompleteness and completeness for noninvariant properties. Chapter II. The structure, automorphisms, and elementary theory of the r.e. sets. 6. Basic facts and splitting theorems. 7. Hh-simple sets. 8. Major subsets and r-maximal sets. 9. Automorphisms of &. 10. The elementary theory of S. Chapter III. The structure of the r.e. degrees. 11. Basic facts. 12. The finite injury priority method. 13. The infinite injury priority method. 14. The minimal pair method and lattice embeddings in R. 15. Cupping and splitting r.e. degrees. 16. Automorphisms and decidability of R.

1,873 citations

••

TL;DR: Expander graphs were first defined by Bassalygo and Pinsker in the early 1970s, and their existence was proved in the late 1970s as discussed by the authors and early 1980s.

Abstract: A major consideration we had in writing this survey was to make it accessible to mathematicians as well as to computer scientists, since expander graphs, the protagonists of our story, come up in numerous and often surprising contexts in both fields But, perhaps, we should start with a few words about graphs in general They are, of course, one of the prime objects of study in Discrete Mathematics However, graphs are among the most ubiquitous models of both natural and human-made structures In the natural and social sciences they model relations among species, societies, companies, etc In computer science, they represent networks of communication, data organization, computational devices as well as the flow of computation, and more In mathematics, Cayley graphs are useful in Group Theory Graphs carry a natural metric and are therefore useful in Geometry, and though they are “just” one-dimensional complexes, they are useful in certain parts of Topology, eg Knot Theory In statistical physics, graphs can represent local connections between interacting parts of a system, as well as the dynamics of a physical process on such systems The study of these models calls, then, for the comprehension of the significant structural properties of the relevant graphs But are there nontrivial structural properties which are universally important? Expansion of a graph requires that it is simultaneously sparse and highly connected Expander graphs were first defined by Bassalygo and Pinsker, and their existence first proved by Pinsker in the early ’70s The property of being an expander seems significant in many of these mathematical, computational and physical contexts It is not surprising that expanders are useful in the design and analysis of communication networks What is less obvious is that expanders have surprising utility in other computational settings such as in the theory of error correcting codes and the theory of pseudorandomness In mathematics, we will encounter eg their role in the study of metric embeddings, and in particular in work around the Baum-Connes Conjecture Expansion is closely related to the convergence rates of Markov Chains, and so they play a key role in the study of Monte-Carlo algorithms in statistical mechanics and in a host of practical computational applications The list of such interesting and fruitful connections goes on and on with so many applications we will not even

1,822 citations