scispace - formally typeset
Book ChapterDOI

Differentiable dynamical systems

TLDR
A survey article on the area of global analysis defined by differentiable dynamical systems or equivalently the action (differentiable) of a Lie group G on a manifold M is presented in this paper.
Abstract
This is a survey article on the area of global analysis defined by differentiable dynamical systems or equivalently the action (differentiable) of a Lie group G on a manifold M. An action is a homomorphism G→Diff(M) such that the induced map G×M→M is differentiable. Here Diff(M) is the group of all diffeomorphisms of M and a diffeo- morphism is a differentiable map with a differentiable inverse. Everything will be discussed here from the C ∞ or C r point of view. All manifolds maps, etc. will be differentiable (C r , 1 ≦ r ≦ ∞) unless stated otherwise.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Ergodic theory of chaos and strange attractors

TL;DR: A review of the main mathematical ideas and their concrete implementation in analyzing experiments can be found in this paper, where the main subjects are the theory of dimensions (number of excited degrees of freedom), entropy (production of information), and characteristic exponents (describing sensitivity to initial conditions).
Journal ArticleDOI

A universal instability of many-dimensional oscillator systems

Boris Chirikov
- 01 May 1979 - 
TL;DR: In this article, the authors demonstrate the mechanism for a universal instability, the Arnold diffusion, which occurs in the oscillating systems having more than two degrees of freedom, which results in an irregular, or stochastic, motion of the system as if the latter were influenced by a random perturbation even though, in fact, the motion is governed by purely dynamical equations.
Journal ArticleDOI

An equation for continuous chaos

TL;DR: A prototype equation to the Lorenz model of turbulence contains just one (second-order) nonlinearity in one variable as mentioned in this paper, which allows for a "folded" Poincare map (horseshoe map).
Book ChapterDOI

Period Three Implies Chaos

TL;DR: In this article, a generalized logistic equation was used to model the distribution of points of impact on a spinning bit for oil well drilling, as mentioned if this distribution is helpful in predicting uneven wear of the bit.
Journal ArticleDOI

Controlling chaos

References
More filters
Book

Ordinary differential equations

TL;DR: In this article, the Poincare-Bendixson theory is used to explain the existence of linear differential equations and the use of Implicity Function and fixed point Theorems.
Book

Theory of Ordinary Differential Equations

TL;DR: The prerequisite for the study of this book is a knowledge of matrices and the essentials of functions of a complex variable as discussed by the authors, which is a useful text in the application of differential equations as well as for the pure mathematician.
Book

Foundations of mechanics

Ralph Abraham
TL;DR: In this article, Ratiu and Cushman introduce differential theory calculus on manifolds and derive an overview of qualitative and topological properties of differentiable properties of topological dynamics.
Book

Functional analysis

Frigyes Riesz