scispace - formally typeset
Search or ask a question

Showing papers in "Clinical Microbiology Reviews in 1994"


Journal ArticleDOI
TL;DR: The clinical significance of coagulase-negative Staphylococcus species (CNS) continues to increase as strategies in medical practice lead to more invasive procedures and the use of antibiotics in hospitals has provided a reservoir of antibiotic-resistant genes.
Abstract: The clinical significance of coagulase-negative Staphylococcus species (CNS) continues to increase as strategies in medical practice lead to more invasive procedures. Hospitalized patients that are immunocompromised and/or suffering from chronic diseases are the most vulnerable to infection. Since CNS are widespread on the human body and are capable of producing very large populations, distinguishing the etiologic agent(s) from contaminating flora is a serious challenge. For this reason, culture identification should proceed to the species and strain levels. A much stronger case can be made for the identification of a CNS etiologic agent if the same strain is repeatedly isolated from a series of specimens as opposed to the isolation of different strains of one or more species. Strain identity initially can be based on colony morphology, and then one or more molecular approaches can be used to gain information on the genotype. Many of the CNS species are commonly resistant to antibiotics that are being indicated for staphylococcal infections, with the exception of vancomycin. The widespread use of antibiotics in hospitals has provided a reservoir of antibiotic-resistant genes. The main focus on mechanisms of pathogenesis has been with foreign body infections and the role of specific adhesins and slime produced by Staphylococcus epidermidis. Slime can reduce the immune response and opsonophagocytosis, thereby interfering with host defense mechanisms. As we become more aware of the various strategies used by CNS, we will be in a better position to compromise their defense mechanisms and improve treatment.

815 citations


Journal ArticleDOI
TL;DR: The current understanding of enterococcal virulence relating to adherence to host tissues, invasion and abscess formation, factors potentially relevant to modulation of host inflammatory responses, and potentially toxic secreted products are discussed.
Abstract: Enterococci are commensal organisms well suited to survival in intestinal and vaginal tracts and the oral cavity. However, as for most bacteria described as causing human disease, enterococci also possess properties that can be ascribed roles in pathogenesis. The natural ability of enterococci to readily acquire, accumulate, and share extrachromosomal elements encoding virulence traits or antibiotic resistance genes lends advantages to their survival under unusual environmental stresses and in part explains their increasing importance as nosocomial pathogens. This review discusses the current understanding of enterococcal virulence relating to (i) adherence to host tissues, (ii) invasion and abscess formation, (iii) factors potentially relevant to modulation of host inflammatory responses, and (iv) potentially toxic secreted products. Aggregation substance, surface carbohydrates, or fibronectin-binding moieties may facilitate adherence to host tissues. Enterococcus faecalis appears to have the capacity to translocate across intact intestinal mucosa in models of antibiotic-induced superinfection. Extracellular toxins such as cytolysin can induce tissue damage as shown in an endophthalmitis model, increase mortality in combination with aggregation substance in an endocarditis model, and cause systemic toxicity in a murine peritonitis model. Finally, lipoteichoic acid, superoxide production, or pheromones and corresponding peptide inhibitors each may modulate local inflammatory reactions. Images

778 citations


Journal ArticleDOI
TL;DR: The nocardiae are facultative intracellular pathogens that can persist within the host, probably in a cryptic form (L-form), for life and are an important part of the normal soil microflora worldwide.
Abstract: The nocardiae are bacteria belonging to the aerobic actinomycetes. They are an important part of the normal soil microflora worldwide. The type species, Nocardia asteroides, and N. brasiliensis, N. farcinica, N. otitidiscaviarum, N. nova, and N. transvalensis cause a variety of diseases in both normal and immunocompromised humans and animals. The mechanisms of pathogenesis are complex, not fully understood, and include the capacity to evade or neutralize the myriad microbicidal activities of the host. The relative virulence of N. asteroides correlates with the ability to inhibit phagosome-lysosome fusion in phagocytes; to neutralize phagosomal acidification; to detoxify the microbicidal products of oxidative metabolism; to modify phagocyte function; to grow within phagocytic cells; and to attach to, penetrate, and grow within host cells. Both activated macrophages and immunologically specific T lymphocytes constitute the major mechanisms for host resistance to nocardial infection, whereas B lymphocytes and humoral immunity do not appear to be as important in protecting the host. Thus, the nocardiae are facultative intracellular pathogens that can persist within the host, probably in a cryptic form (L-form), for life. Silent invasion of brain cells by some Nocardia strains can induce neurodegeneration in experimental animals; however, the role of nocardiae in neurodegenerative diseases in humans needs to be investigated.

739 citations


Journal ArticleDOI
TL;DR: The epidemiology and microbiology of the major medically important aerobic actinomycetes, which have been a major source of interest for the commercial drug industry and have proved to be extremely useful microorganisms for producing novel antimicrobial agents, are reviewed.
Abstract: The aerobic actinomycetes are soil-inhabiting microorganisms that occur worldwide. In 1888, Nocard first recognized the pathogenic potential of this group of microorganisms. Since then, several aerobic actinomycetes have been a major source of interest for the commercial drug industry and have proved to be extremely useful microorganisms for producing novel antimicrobial agents. They have also been well known as potential veterinary pathogens affecting many different animal species. The medically important aerobic actinomycetes may cause significant morbidity and mortality, in particular in highly susceptible severely immunocompromised patients, including transplant recipients and patients infected with human immunodeficiency virus. However, the diagnosis of these infections may be difficult, and effective antimicrobial therapy may be complicated by antimicrobial resistance. The taxonomy of these microorganisms has been problematic. In recent revisions of their classification, new pathogenic species have been recognized. The development of additional and more reliable diagnostic tests and of a standardized method for antimicrobial susceptibility testing and the application of molecular techniques for the diagnosis and subtyping of these microorganisms are needed to better diagnose and treat infected patients and to identify effective control measures for these unusual pathogens. We review the epidemiology and microbiology of the major medically important aerobic actinomycetes. Images

649 citations


Journal ArticleDOI
TL;DR: Foreign-body-associated fusarial infection such as keratitis in contact lens wearers, onychomycosis, skin infections, and disseminated multiorgan infections are discussed and the implications for the association of the carcinogens, fumonisins, produced by Fusarium moniliforme and other FUSarium species with human diseases are discussed.
Abstract: There are several taxonomic systems available for identifying Fusarium species. The philosophy used in each taxonomic system is discussed as well as problems encountered in working with Fusarium species in culture. Fusarium species are toxigenic, and the mycotoxins produced by these organisms are often associated with animal and human diseases. The implications for the association of the carcinogens, fumonisins, produced by Fusarium moniliforme and other Fusarium species with human diseases are discussed. Foreign-body-associated fusarial infection such as keratitis in contact lens wearers, onychomycosis, skin infections, and disseminated multiorgan infections are discussed. Disseminated fusarial hyalohyphomycosis has emerged as a significant, usually fatal infection in the immunocompromised host. Successful outcome is determined by the degree of immunosuppression, the extent of the infection, and the presence of a removable focus such as an indwelling central venous catheter. These infections may be clinically suspected on the basis of a constellation of clinical and laboratory findings, which should lead to prompt therapy, probably with one of the newer antifungal agents. Perhaps the use of such agents or the use of colony-stimulating factors may improve the outcome of this devastating infection. However, until new approaches for treatment develop, effective preventive measures are urgently needed.

624 citations


Journal ArticleDOI
TL;DR: Progress is being made with respect to in vitro propagation of microsporidia, which is crucial for developing antimicrosporidial drugs, and molecular techniques are being developed for diagnostic purposes, taxonomic classification, and analysis of phylogenetic relationships.
Abstract: Microsporidia are obligate intracellular spore-forming protozoal parasites belonging to the phylum Microspora. Their host range is extensive, including most invertebrates and all classes of vertebrates. More than 100 microsporidial genera and almost 1,000 species have now been identified. Five genera (Enterocytozoon spp., Encephalitozoon spp., Septata spp., Pleistophora sp., and Nosema spp.) and unclassified microsporidia (referred to by the collective term Microsporidium) have been associated with human disease, which appears to manifest primarily in immunocompromised persons. The clinical manifestations of microsporidiosis are diverse and include intestinal, pulmonary, ocular, muscular, and renal disease. Among persons not infected with human immunodeficiency virus, ten cases of microsporidiosis have been documented. In human immunodeficiency virus-infected patients, on the other hand, over 400 cases of microsporidiosis have been identified, the majority attributed to Enterocytozoon bieneusi, an important cause of chronic diarrhea and wasting. Diagnosis of microsporidiosis currently depends on morphological demonstration of the organisms themselves. Initial detection of microsporidia by light microscopic examination of tissue sections and of more readily obtainable specimens such as stool, duodenal aspirates, urine, sputum, nasal discharge, bronchoalveolar lavage fluid, and conjunctival smears is now becoming routine practice. Definitive species identification is made by using the specific fluorescein-tagged antibody (immunofluorescence) technique or electron microscopy. Treatment options are limited, but symptomatic improvement of Enterocytozoon bieneusi infection may be achieved with the anthelmintic-antiprotozoal drug albendazole. Preliminary observations suggest that Septata intestinalis and Encephalitozoon infections may be cured with albendazole. Progress is being made with respect to in vitro propagation of microsporidia, which is crucial for developing antimicrosporidial drugs. Furthermore, molecular techniques are being developed for diagnostic purposes, taxonomic classification, and analysis of phylogenetic relationships of microsporidia.

579 citations


Journal ArticleDOI
TL;DR: IMS has been demonstrated to be a useful method in diagnostic microbiology and described as a method for enhancing the specificity and sensitivity of other detection systems, such as PCR, and providing considerable savings in time compared with traditional diagnostic systems.
Abstract: The principles of magnetic separation aided by antibodies or other specific binding molecules have been used for isolation of specific viable whole organisms, antigens, or nucleic acids. Whereas growth on selective media may be helpful in isolation of a certain bacterial species, immunomagnetic separation (IMS) technology can isolate strains possessing specific and characteristic surface antigens. Further separation, cultivation, and identification of the isolate can be performed by traditional biochemical, immunologic, or molecular methods. PCR can be used for amplification and identification of genes of diagnostic importance for a target organism. The combination of IMS and PCR reduces the assay time to several hours while increasing both specificity and sensitivity. Use of streptavidin-coated magnetic beads for separation of amplified DNA fragments, containing both biotin and a signal molecule, has allowed for the conversion of the traditional PCR into an easy-to-read microtiter plate format. The bead-bound PCR amplicons can also easily be sequenced in an automated DNA sequencer. The latter technique makes it possible to obtain sequence data of 300 to 600 bases from 20 to 30 strains, starting with clinical samples, within 12 to 24 h. Sequence data can be used for both diagnostic and epidemiologic purposes. IMS has been demonstrated to be a useful method in diagnostic microbiology. Most recent publications describe IMS as a method for enhancing the specificity and sensitivity of other detection systems, such as PCR, and providing considerable savings in time compared with traditional diagnostic systems. The relevance to clinical diagnosis has, however, not yet been fully established for all of these new test principles. In the case of PCR, for example, the presence of specific DNA in a food sample does not demonstrate the presence of a live organism capable of inducing a disease. However, all tests offering increased sensitivity and specificity of detection, combined with reduced time of analysis, have to be seriously evaluated. Images

557 citations


Journal ArticleDOI
TL;DR: Present-day problems associated with this food source still involve some wastewaterborne bacterial illnesses, but the principal public health concerns are with wastewater-derived viral pathogens and with bacterial agents of an environmental origin.
Abstract: A history of shellfish-vectored illnesses (i.e., those associated with consumption of clams, oysters, mussels, and scallops) occurring in the past nine decades is presented. Typhoid fever was a significant public health problem among consumers of raw molluscan shellfish earlier in this century. The development of more effective sewage treatment procedures and the institution of a national program following these outbreaks led to a series of measures which eventually eliminated shellfish-associated typhoid fever. Present-day problems associated with this food source still involve some wastewaterborne bacterial illnesses. However, the principal public health concerns are with wastewater-derived viral pathogens and with bacterial agents of an environmental origin. The nature, occurrence, and magnitude of these public health problems are described.

417 citations


Journal ArticleDOI
TL;DR: Of more than 500 arboviruses recognized worldwide, 5 were firstisolated in Canada and 58 were first isolated in the United States, and six of these viruses are human pathogens: western equine encephalitis and eastern equineencephalitis (WEE) viruses (family Togaviridae, genus Alphavirus), St. Louis encephalopathy (SLE) and Powassan (POW) viruses, LaCrosse (LAC) virus, La
Abstract: Of more than 500 arboviruses recognized worldwide, 5 were first isolated in Canada and 58 were first isolated in the United States. Six of these viruses are human pathogens: western equine encephalitis (WEE) and eastern equine encephalitis (EEE) viruses (family Togaviridae, genus Alphavirus), St. Louis encephalitis (SLE) and Powassan (POW) viruses (Flaviviridae, Flavivirus), LaCrosse (LAC) virus (Bunyaviridae, Bunyavirus), and Colorado tick fever (CTF) virus (Reoviridae, Coltivirus). Their scientific histories, geographic distributions, virology, epidemiology, vectors, vertebrate hosts, transmission, pathogenesis, clinical and differential diagnoses, control, treatment, and laboratory diagnosis are reviewed. In addition, mention is made of the Venezuelan equine encephalitis (VEE) complex viruses (family Togaviridae, genus Alphavirus), which periodically cause human and equine disease in North America. WEE, EEE, and SLE viruses are transmitted by mosquitoes between birds; POW and CTF viruses, between wild mammals by ticks; LAC virus, between small mammals by mosquitoes; and VEE viruses, between small or large mammals by mosquitoes. Human infections are tangential to the natural cycle. Such infections range from rare to focal but are relatively frequent where they occur. Epidemics of WEE, EEE, VEE, and SLE viruses have been recorded at periodic intervals, but prevalence of infections with LAC and CTF viruses typically are constant, related to the degree of exposure to infected vectors. Infections with POW virus appear to be rare. Adequate diagnostic tools are available, but treatment is mainly supportive, and greater efforts at educating the public and the medical community are suggested if infections are to be prevented.

388 citations


Journal ArticleDOI
TL;DR: The current state of PCR-mediated genotyping is reviewed, and a comparison with conventional molecular typing methods is included.
Abstract: Selected segments of any DNA molecule can be amplified exponentially by PCR. This technique provides a powerful tool to detect and identify minimal numbers of microorganisms. PCR is applicable both in diagnosis and in epidemiology. By amplification of hypervariable DNA domains, differences can be detected even among closely related strains. PCR fingerprinting is a valuable tool for medical microbiologists, epidemiologists, and microbial taxonomists. The current state of PCR-mediated genotyping is reviewed, and a comparison with conventional molecular typing methods is included. Because of its speed and versatility, PCR fingerprinting will play an important role in microbial genetics, epidemiology, and systematics. Images

288 citations


Journal ArticleDOI
TL;DR: Recent psychoneuroimmunology literature exploring the effects of stress on the pathogenesis of, and immune response to, infectious disease in mammals is reviewed.
Abstract: The mammalian response to stress involves the release of soluble products from the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis. Cells of the immune system respond to many of the hormones, neurotransmitters, and neuropeptides through specific receptors. The function of the immune system is critical in the mammalian response to infectious disease. A growing body of evidence identifies stress as a cofactor in infectious disease susceptibility and outcomes. It has been suggested that effects of stress on the immune system may mediate the relationship between stress and infectious disease. This article reviews recent psychoneuroimmunology literature exploring the effects of stress on the pathogenesis of, and immune response to, infectious disease in mammals.

Journal ArticleDOI
TL;DR: This review evaluates candidate candidal adhesions for epithelial and endothelial surfaces, with emphasis on the specificity of the interaction, the inhibitors that have been employed, and the ligands that have be identified on mammalian cells or matrices.
Abstract: Adhesion of candidal species to the epithelium of the gastrointestinal or genitourinary tract stands as a critical first step in the pathogenesis of candidal infection. After colonization and replication at mucosal surfaces, Candida albicans and other pathogenic species may penetrate the mucosal barrier, enter the vascular tree, and disseminate hematogenously. The consequences of this pathogenic cascade evoke considerable morbidity and mortality, especially among immunocompromised patients. Thus, interactions of C. albicans and other candidal species with epithelium and endothelium may lead to serious consequences for the human host. This review evaluates candidate candidal adhesions for epithelial and endothelial surfaces, with emphasis on the specificity of the interaction, the inhibitors that have been employed, and the ligands that have been identified on mammalian cells or matrices. Three types of interactions are described: protein-protein interactions, lectin-like interactions, and incompletely defined interactions in which the adhesive ligand is as yet unidentified. Special attention is given to the roles of integrin-like proteins. Differences in the mechanisms of candidal attachment to epithelium and endothelium are delineated. Last, on the basis of the available literature, avenues of potentially fruitful investigation are proposed.

Journal ArticleDOI
TL;DR: The incidence of sepsis caused by transfusion of bacterially contaminated blood components is similar to or less than that of transfusion-transmitted hepatitis C virus infection, yet significantly exceeds those currently estimated for transfusions-associated human immunodeficiency and hepatitis B viruses.
Abstract: The incidence of sepsis caused by transfusion of bacterially contaminated blood components is similar to or less than that of transfusion-transmitted hepatitis C virus infection, yet significantly exceeds those currently estimated for transfusion-associated human immunodeficiency and hepatitis B viruses. Outcomes are serious and may be fatal. In addition, transfusion of sterile allogenic blood can have generalized immunosuppressive effects on recipients, resulting in increased susceptibility to postoperative infection. This review examines the frequency of occurrence of transfusion-associated sepsis, the organisms implicated, and potential sources of bacteria. Approaches to minimize the frequency of sepsis are discussed, including the benefits and disadvantages of altering the storage conditions for blood. In addition, the impact of high levels of bacteria on the gross characteristics of erythrocyte and platelet concentrates is described. The potentials and limitations of current tests for detecting bacteria in blood are also discussed.

Journal ArticleDOI
A K Field1, K K Biron1
TL;DR: The emergence and clinical importance of drug resistance among the herpesviruses have been explored and particular attention has been focused on the understanding of the mechanisms ofdrug resistance and how that understanding will guide the development of more effective antiviral drugs and drug usage.
Abstract: In the past 4 years, interest in drug-resistant herpesviruses has evolved from the realm of academic laboratory studies to that of great clinical importance. Recurrent and persistent infections due to the herpes simplex viruses, varicella-zoster virus, and human cytomegalovirus have been an unwelcome consequence of immunosuppression in graft recipients, cancer patients, and those suffering from AIDS. Treatment of these infections with the available antiviral drugs, such as acyclovir, ganciclovir, and foscarnet, has resulted in both clinical benefit and the emergence of drug-resistant variants. In addition, the role of Epstein-Barr virus is being clarified for an array of disease syndromes, and therapeutic approaches are beginning to emerge. In the present review, the emergence and clinical importance of drug resistance among the herpesviruses have been explored. Furthermore, particular attention has been focused on our understanding of the mechanisms of drug resistance and how that understanding will guide us in the development of more effective antiviral drugs and drug usage.

Journal ArticleDOI
TL;DR: Prevention of HCV infection by vaccination is likely to be challenging if ongoing viral mutation results in escape from neutralization and clearance.
Abstract: The hepatitis C virus (HCV), a single-stranded RNA virus, is the major cause of posttransfusion hepatitis. HCV isolates differ in nucleotide and amino acid sequences. Nucleotide changes are concentrated in hypervariable regions and may be related to immune selection. In most immunocompetent persons, HCV infection is diagnosed serologically, using antigens from conserved regions. Amplification of RNA may be necessary to detect infection in immunosuppressed patients. Transmission by known parenteral routes is frequent; other means of spread are less common and may represent inapparent, percutaneous dissemination. Infection can lead to classical acute hepatitis, but most infected persons have no history of acute disease. Once infected, most individuals apparently remain carriers of the virus, with varying degrees of hepatocyte damage and fibrosis ensuing. Chronic hepatitis may lead to cirrhosis and hepatocellular carcinoma. However, disease progression varies widely, from less than 2 years to cirrhosis in some patients to more than 30 years with only chronic hepatitis in others. Determinants important in deciding outcome are unknown. Alpha interferon, which results in sustained remission in selected patients, is the only available therapy. Long-term benefits from such therapy have not been demonstrated. Prevention of HCV infection by vaccination is likely to be challenging if ongoing viral mutation results in escape from neutralization and clearance.

Journal ArticleDOI
TL;DR: Bronchoscopy has been applied in three primary clinical settings, including the immunocompromised host, especially human immunodeficiency virus-infected and organ transplant patients; ventilator-associated pneumonia; and severe, nonresolving community- or hospital-acquired pneumonia in nonventilated patients.
Abstract: Lower respiratory tract infections are characterized by significant morbidity and mortality but also by a relative inability to establish a specific etiologic agent on clinical grounds alone. With the recognized shortcomings of expectorated or aspirated secretions toward establishing an etiologic diagnosis, clinicians have increasingly used bronchoscopy to obtain diagnostic samples. A variety of specimen types may be obtained, including bronchial washes or brushes, protected specimen brushings, bronchoalveolar lavage, and transbronchial biopsies. Bronchoscopy has been applied in three primary clinical settings, including the immunocompromised host, especially human immunodeficiency virus-infected and organ transplant patients; ventilator-associated pneumonia; and severe, nonresolving community- or hospital-acquired pneumonia in nonventilated patients. In each clinical setting, and for each specimen type, specific laboratory protocols are required to provide maximal information. These protocols should provide for the use of a variety of rapid microscopic and quantitative culture techniques and the use of a variety of specific stains and selective culture to detect unusual organism groups.

Journal ArticleDOI
TL;DR: Although there may be limitation to this approach, ribotyping was found to be highly discriminative, particularly for typing members of the family Enterobacteriaceae, Pseudomonas cepacia, and Xanthomonas maltophilia.
Abstract: Over the past few years, genotypic methods based on the study of bacterial DNA polymorphism have shown high discriminatory power for strain differentiation and superiority over most phenotypic methods commonly available in the clinical microbiology laboratory. Some of the methods used, however, required either a high level of technology and sophisticated equipment (e.g., pulsed-field gel electrophoresis) or species-specific reagents of restricted availability (randomly cloned DNA probes or gene-specific probes). Because ribotyping uses a universal probe (rRNA) and is a rather simple technology, particularly since the advent of nonradioactive labelling systems, it has been widely used for strain differentiation of most bacterial species involved in nosocomial outbreaks. In vitro and in vivo stability of the markers studied has been demonstrated. Although there may be limitation to this approach, ribotyping was found to be highly discriminative, particularly for typing members of the family Enterobacteriaceae, Pseudomonas cepacia, and Xanthomonas maltophilia. In many cases, it has improved the understanding of the mechanism of nosocomial acquisition of organisms by allowing a distinction between endogenous and exogenous infections. Among exogenous infections, it has distinguished between individual and epidemic strains, thus differentiating cross-infection from independent acquisition. Images

Journal ArticleDOI
TL;DR: A review of the role of surrogate markers in the natural history and treatment of HIV infection can be found in this paper, where the clinical usefulness of each marker is assessed with respect to the criteria outlined for the ideal surrogate marker for HIV disease progression.
Abstract: Human immunodeficiency virus (HIV) interacts with the immune system throughout the course of infection. For most of the disease process, HIV activates the immune system, and the degree of activation can be assessed by measuring serum levels of molecules such as beta 2-microglobulin and neopterin, as well as other serum and cell surface phenotype markers. The levels of some of these markers correlate with clinical progression of HIV disease, and these markers may be useful as surrogate markers for development of clinical AIDS. Because the likelihood and timing of development of clinical AIDS following seroconversion, for any particular individual, are not readily predictable, the use of nonclinical disease markers has become critically important to patient management. Surrogate markers of HIV infection are, by definition, measurable traits that correlate with disease progression. An ideal marker should identify patients at highest risk of disease progression, provide information on how long an individual has been infected, help in staging HIV disease, predict development of opportunistic infections associated with AIDS, monitor the therapeutic efficacy of immunomodulating or antiviral treatments, and the easily quantifiable, reliable, clinically available, and affordable. This review examines the current state of knowledge and the role of surrogate markers in the natural history and treatment of HIV infection. The clinical usefulness of each marker is assessed with respect to the criteria outlined for the ideal surrogate marker for HIV disease progression.

Journal ArticleDOI
TL;DR: The strategies employed for the development of a vaccine for Neisseria meningitidis serogroup B are reviewed and the difficulties associated with the different approaches are discussed.
Abstract: Meningococcal meningitis is a severe, life-threatening infection for which no adequate vaccine exists. Current vaccines, based on the group-specific capsular polysaccharides, provide short-term protection in adults against serogroups A and C but are ineffective in infants and do not induce protection against group B strains, the predominant cause of infection in western countries, because the purified serogroup B polysaccharide fails to elicit human bactericidal antibodies. Because of the poor immunogenicity of group B capsular polysaccharide, different noncapsular antigens have been considered for inclusion in a vaccine against this serogroup: outer membrane proteins, lipooligosaccharides, iron-regulated proteins, Lip, pili, CtrA, and the immunoglobulin A proteases. Alternatively, attempts to increase the immunogenicity of the capsular polysaccharide have been made by using noncovalent complexes with outer membrane proteins, chemical modifications, and structural analogs. Here, we review the strategies employed for the development of a vaccine for Neisseria meningitidis serogroup B; the difficulties associated with the different approaches are discussed.

Journal ArticleDOI
TL;DR: Developing multivalent vaccines, that is, vaccines which contain immunogens from more than one part of the life cycle, is a promising area for research efforts and must be incorporated into a delivery system that maximizes the interaction between the vaccine epitopes and the host immune system.
Abstract: The malaria parasite life cycle presents several targets for attack, but these different parts of the life cycle are susceptible to different types of host immune response. For example, the sporozoite is most sensitive to immune antibody, while liver stage parasites can be eliminated by cytotoxic T lymphocytes. Attachment of merozoites to erythrocytes, on the other hand, can be blocked by antibody. Convincing experimental evidence shows that completely protective immunity to malaria can be induced. The challenge now is to design recombinant or synthetic vaccines that induce the right types of immune responses to specific life cycle stages. This requires the identification and characterization of B- and T-lymphocyte epitopes expressed by the parasite or by parasitized host cells. These epitopes must be incorporated into a delivery system that maximizes the interaction between the vaccine epitopes and the host immune system. Many epitopes from several parts of the life cycle are already characterized; development of multivalent vaccines, that is, vaccines which contain immunogens from more than one part of the life cycle, is a promising area for research efforts.

Journal ArticleDOI
D Law1
TL;DR: The definition ofEPEC based on serotyping is inaccurate and should be replaced by methods that specifically detect the virulence properties of EPEC, as it is now apparent that many isolates belonging to these serogroups are not pathogenic or belong to other pathogenic groups of E. coli.
Abstract: Enteropathogenic Escherichia coli (EPEC) organisms are an important cause of diarrheal disease in young children. The virulence of EPEC is a multifactorial process and involves a number of distinct stages. Initial adherence to intestinal mucosa is mediated by fimbriae which bring about a distinct form of adhesion, localized adhesion. Intimate adhesion of the bacterium to the eukaryotic membrane occurs, resulting in the activation of signal transduction pathways. Microvilli are disrupted and effaced from the apical membrane which then cups around the organism to form pedestal structures, the attaching and effacing lesion. Diarrhea may be produced by alteration of the permeability of the apical membrane and also through a malabsorption mechanism. The pathways involved in the production of the attaching and effacing lesion are described. EPEC organisms were originally thought to belong to a number of distinct serogroups; it is now apparent that many isolates belonging to these serogroups are not pathogenic or belong to other pathogenic groups of E. coli. In addition, isolates falling outside of these serogroups are considered to be true EPEC. The definition of EPEC based on serotyping is inaccurate and should be replaced by methods that specifically detect the virulence properties of EPEC.

Journal ArticleDOI
TL;DR: A number of adjuvant substances whose activity in animals indicates a potential use in human vaccines are highlighted, and the potential of several well-defined substances, termed immunomodulators, which nonspecifically stimulate resistance of animals to multiple 50% lethal doses of microbial challenge is described.
Abstract: Epitopes on microbial antigens responsible for protective immunity have begun to be identified and isolated, and their chemical structures have been determined. Ensuing knowledge of their weak immunizing capacity per se has led to an appreciation of the need for adjuvants to increase the immunogenicity of these low-molecular-weight synthetic structures. As such, a recent surge in adjuvant research has emerged. Accordingly, this review will highlight a number of those adjuvant substances whose activity in animals indicates a potential use in human vaccines. In addition, the potential of several well-defined substances, termed immunomodulators, which nonspecifically stimulate resistance of animals to multiple 50% lethal doses of microbial challenge is described. Among the most extensively characterized adjuvants of microbial origin discussed in detail are (i) the lipopolysaccharides isolated from gram-negative bacteria and their nontoxic analogs, (ii) the synthetic muramyl dipeptides and their multiple analogs, and (iii) the synthetic polyribonucleotide complexes, mimicking the interferon-inducing capacity of viruses. Discussed also are the heat-labile enterotoxin of Escherichia coli, the nonionic block copolymers, the saponins, a quinolamine derivative, and the hormone dihydroepiandrosterone.

Journal ArticleDOI
TL;DR: The requirement for a comprehensive strategy for viral diagnosis involving multiple techniques was indicated by the findings of the incidence and nature of mixed virus infections diagnosed in the same clinical specimen from immunocompetent patients.
Abstract: An analysis was done of the incidence and nature of mixed virus infections diagnosed in the same clinical specimen from immunocompetent patients; respiratory viruses were emphasized. Few studies have addressed mixed viral infections in any systematic fashion. The relevant studies reviewed focused on clinical relationships or diagnostic methods. Data relating to multiple infections were usually derived incidentally to the purpose of the investigations. Sixty-three percent of the reports with data on mixed infections identified them in 10% of specimens that were negative for the virus targeted by one method. There was no indication that mixed infections were associated with increased disease in immunocompetent patients or in certain immunocompromised patients. Immunocompromised patients, however, appeared to have a greater incidence of multiple infections. Mixed infections of single cells also occur and may have important clinical implications relative to reactivation of latent viruses and enhanced disease. The requirement for a comprehensive strategy for viral diagnosis involving multiple techniques was indicated by these findings.

Journal ArticleDOI
TL;DR: Parainfluenza virus types 1 to 4 (PIV1 to PIV4) are important human pathogens that cause upper and lower respiratory tract infections, especially in infants and children, and several strategies for vaccine development have been investigated, and it may become possible to prevent PIV infections in the near future.
Abstract: Parainfluenza virus types 1 to 4 (PIV1 to PIV4) are important human pathogens that cause upper and lower respiratory tract infections, especially in infants and children. PIV1, PIV2, and PIV3 are second only to respiratory syncytial virus as a cause of croup in young children. Although some clinical symptoms are typical of PIVs, etiologic diagnosis always requires detection of infectious virus, viral components, or an antibody response. PIVs are typical paramyxoviruses, causing a syncytial cytopathic effect in cell cultures; virus growth can be confirmed either by hemadsorption or by using immunological reagents. Currently, PIV is most often diagnosed by demonstrating viral antigens in clinical specimens by rapid and highly sensitive immunoassays. More recently, PCR has been used for the detection of PIVs. Serological diagnosis is made by detecting a rising titer of immunoglobulin G or by demonstrating immunoglobulin M antibodies. PIVs infect species other than humans, and animal models are used to study the pathogenesis of PIV infections and to test candidate vaccines. Accumulating knowledge on the molecular structure and mechanisms of replication of PIVs has accelerated research on prevention and treatment. Several strategies for vaccine development, such as the use of live attenuated, inactivated, recombinant, and subunit vaccines, have been investigated, and it may become possible to prevent PIV infections in the near future.

Journal ArticleDOI
Ann Robinson1
TL;DR: Although cost containment directed at misutilization and overutilization of existing services has conserved resources, an effective cost control mechanism has yet to be identified and successfully implemented on a grand enough scale to significantly impact health care expenditures in the United States.
Abstract: There is virtually universal consensus that the health care system in the United States is too expensive and that costs need to be limited. Similar to health care costs in general, clinical laboratory expenditures have increased rapidly as a result of increased utilization and inflationary trends within the national economy. Economic constraints require that a compromise be reached between individual welfare and limited societal resources. Public pressure and changing health care needs have precipitated both subtle and radical laboratory changes to more effectively use allocated resources. Responsibility for excessive laboratory use can be assigned primarily to the following four groups: practicing physicians, physicians in training, patients, and the clinical laboratory. The strategies to contain escalating health care costs have ranged from individualized physician education programs to government intervention. Laboratories have responded to the fiscal restraints imposed by prospective payment systems by attempting to reduce operational costs without adversely impacting quality. Although cost containment directed at misutilization and overutilization of existing services has conserved resources, to date, an effective cost control mechanism has yet to be identified and successfully implemented on a grand enough scale to significantly impact health care expenditures in the United States.

Journal ArticleDOI
J L Watts1, R J Yancey1
TL;DR: This article reviews both the commercial identification systems evaluated with veterinary pathogens and current methods for performing and interpreting antimicrobial susceptibility tests with Veterinary pathogens.
Abstract: Veterinary diagnostic microbiology is a unique specialty within microbiology. Although isolation and identification techniques are similar to those used for human pathogens, many veterinary pathogens require unique cultivation or identification procedures. Commercial identification systems provide rapid, accurate identification of human pathogens. However, the accuracy of these systems with veterinary pathogens varies widely depending on the bacterial species and the host animal from which it was isolated. Increased numbers of veterinary strains or species in the data bases of the various systems would improve their accuracy. Current procedures and interpretive criteria used for antimicrobial susceptibility testing of veterinary pathogens are based on guidelines used for human pathogens. The validity of these guidelines for use with veterinary pathogens has not been established. As with fastidious human pathogens, standardized methodologies and quality control isolates are needed for tests of organisms such as Actinobacillus pleuropneumoniae and Haemophilus somnus. Furthermore, interpretive criteria for veterinary antimicrobial agents based on the MIC for veterinary pathogens, the pharmacokinetics of the antimicrobial agent in the host animal, and in vivo efficacy of the antimicrobial agent are needed. This article reviews both the commercial identification systems evaluated with veterinary pathogens and current methods for performing and interpreting antimicrobial susceptibility tests with veterinary pathogens. Recommendations for future improvements in both areas are discussed.

Journal ArticleDOI
TL;DR: The use of flow cytometry for the rapid diagnosis of human cytomegalovirus and human immunodeficiency virus in peripheral blood cells of acutely infected patients and the use of this technology to monitor patients on antiviral therapy are reviewed.
Abstract: This article reviews some of the published applications of flow cytometry for in vitro and in vivo detection and enumeration of virus-infected cells. Sample preparation, fixation, and permeabilization techniques for a number of virus-cell systems are evaluated. The use of flow cytometry for multiparameter analysis of virus-cell interactions for simian virus 40, herpes simplex viruses, human cytomegalovirus, and human immunodeficiency virus and its use for determining the effect of antiviral compounds on these virus-infected cells are reviewed. This is followed by a brief description of the use of flow cytometry for the analysis of several virus-infected cell systems, including blue tongue virus, hepatitis C virus, avian reticuloendotheliosis virus, African swine fever virus, woodchuck hepatitis virus, bovine viral diarrhea virus, feline leukemia virus, Epstein-Barr virus, Autographa californica nuclear polyhedrosis virus, and Friend murine leukemia virus. Finally, the use of flow cytometry for the rapid diagnosis of human cytomegalovirus and human immunodeficiency virus in peripheral blood cells of acutely infected patients and the use of this technology to monitor patients on antiviral therapy are reviewed. Future prospects for the rapid diagnosis of in vivo viral and bacterial infections by flow cytometry are discussed.

Journal ArticleDOI
Raymond C. Bartlett1, M Mazens-Sullivan1, J Z Tetreault1, S Lobel1, J Nivard1 
TL;DR: Continuous quality improvement should be introduced, which consists of a more thorough assessment of doing the right things versus the wrong things in terms of customer demand and satisfaction and studying the cumulative effect of error when responsibility is passed from one person to another.
Abstract: Quality management in clinical microbiology began in the 1960s. Both government and professional societies introduced programs for proficiency testing and laboratory inspection and accreditation. Many laboratory scientists and pathologists were independently active and creative in expanding efforts to monitor and improve practices. The initial emphasis was placed on intralaboratory process. Later, attention was shifted to physician ordering, specimen collection, reporting, and use of information. Quality management in the laboratory depends in large part on the monitoring of indicators that provide some evidence of how laboratory resources are being used and how the information benefits patient care. Continuous quality improvement should be introduced. This consists of a more thorough assessment of doing the right things versus the wrong things in terms of customer demand and satisfaction and studying the cumulative effect of error when responsibility is passed from one person to another. Prevention of error is accomplished more through effective training and continuing education than through surveillance. Also, this system will force more conscious attention to meeting the expectations of the many customers that must be satisfied by laboratory services, including patients, physicians, third-party payers, and managed-care organizations.