scispace - formally typeset
Search or ask a question

Showing papers in "Gels in 2023"


Journal ArticleDOI
01 Feb 2023-Gels
TL;DR: A detailed review of polysaccharide-based multifunctional hydrogel bio-adhesives for wound healing can be found in this paper , where the design criteria and functionalities of ideal hyaluronic acid-based biomolecular adhesives are discussed.
Abstract: Wound healing is a long-term and complex biological process that involves multiple hemostasis, inflammation, proliferation, and remodeling stages. In order to realize comprehensive and systematic wound management, appropriate wound treatment bio-adhesives are urgently needed. Hydrogel bio-adhesives have excellent properties and show unique and remarkable advantages in the field of wound management. This review begins with a detailed description of the design criteria and functionalities of ideal hydrogel bio-adhesives for wound healing. Then, recent advances in polysaccharide-based multifunctional hydrogel bio-adhesives, which involve chitosan, hyaluronic acid, alginate, cellulose, dextran, konjac glucomannan, chondroitin sulfate, and other polysaccharides, are comprehensively discussed. Finally, the current challenges and future research directions of polysaccharide-based hydrogel bio-adhesives for wound healing are proposed to stimulate further exploration by researchers.

17 citations


Journal ArticleDOI
01 Jan 2023-Gels
TL;DR: In this article , polymeric cryogels containing poly(N-isopropylacrylamide) were synthesized by cryo-polymerization at subzero temperature.
Abstract: Herein, polymeric cryogels containing poly(N-isopropylacrylamide) were synthesized by cryo-polymerization at subzero temperature. The synthesized cryogels were loaded with silver and palladium nanoparticles by the chemical reduction method at room temperature using the reducing agent NaBH4. Moreover, for comparison with cryogels, pure poly(N-isopropylacrylamide) hydrogel and its silver hybrid were also prepared by the conventional method at room temperature. The chemical structure and functional group analysis of the pure cryogels was confirmed by Fourier transform infrared spectroscopy. The synthesis of hybrid cryogels was confirmed by the X-ray diffraction technique and energy dispersive X-ray. The pore size and surface morphology of the pure cryogels, their respective hybrid cryogels and of conventional hydrogels were studied by using the scanning electron microscopy technique. The hybrid cryogels were successfully used as a catalyst for the degradation of methyl orange dye. The degradation performance of the hybrid cryogels was much better than its counterpart hybrid hydrogel for methyl orange dye. The effect of temperature and amount of catalyst on catalytic performance was studied by UV-visible spectroscopy. The reduction follows pseudo-first-order reaction kinetics. In addition, the antibacterial activities of these cryogels were evaluated against Gram-positive bacteria (Staphylococcus aureus, ATCC: 2593) and Gram-negative bacteria (Escherichia coli, ATCC: 25922). Both hybrid cryogels have shown much better antibacterial activity for these two strains of bacteria compared to pure cryogels. The results indicate that these cryogels are potential candidates for water purification systems as well as biomedical applications.

9 citations


Journal ArticleDOI
23 Jan 2023-Gels
TL;DR: In this paper, a review of the current research status of hydrogels as anti-adhesion barriers is summarized, the character of the hydrogel in the prevention of postoperative adhesion is briefly introduced, and future research directions are discussed.
Abstract: Postoperative adhesion is a common post-surgery complication formed between the surface of the body cavity, ranging from a layer of connective tissue to a fibrous bridge containing blood vessels and nerve tissue. Despite achieving a lot of progress, the mechanisms of adhesion formation still need to be further studied. In addition, few current treatments are consistently effective in the prevention of postoperative adhesion. Hydrogel is a kind of water-expanding crosslinked hydrophilic polymer network generated by a simple reaction of one or more monomers. Due to the porous structure, hydrogels can load different drugs and control the drug release kinetics. Evidence from existing studies has confirmed the feasibility and superiority of using hydrogels to counter postoperative adhesions, primarily due to their outstanding antifouling ability. In this review, the current research status of hydrogels as anti-adhesion barriers is summarized, the character of hydrogels in the prevention of postoperative adhesion is briefly introduced, and future research directions are discussed.

8 citations


Journal ArticleDOI
01 Feb 2023-Gels
TL;DR: An overview of polymer gels can be found in this article , where several perspectives on future advancement of polymer hydrogel are offered. And the classification of polymeric gels' materials is discussed.
Abstract: Polymer gels are a valuable class of polymeric materials that have recently attracted significant interest due to the exceptional properties such as versatility, soft-structure, flexibility and stimuli-responsive, biodegradability, and biocompatibility. Based on their properties, polymer gels can be used in a wide range of applications: food industry, agriculture, biomedical, and biosensors. The utilization of polymer gels in different medical and industrial applications requires a better understanding of the formation process, the factors which affect the gel’s stability, and the structure-rheological properties relationship. The present review aims to give an overview of the polymer gels, the classification of polymer gels’ materials to highlight their important features, and the recent development in biomedical applications. Several perspectives on future advancement of polymer hydrogel are offered.

6 citations


Journal ArticleDOI
18 Jan 2023-Gels
TL;DR: In this paper, shape memory gels containing phytosomes were developed as a delivery system for Nicotiana tabacum var. Virginia fresh (VFL) and dry (VDL) leaf extracts.
Abstract: Oxidative stress is one of the major causes of skin aging. In this study, the shape memory gels containing phytosomes were developed as a delivery system for Nicotiana tabacum var. Virginia fresh (VFL) and dry (VDL) leaf extracts. The extracts were loaded in the phytosomes by a solvent displacement method. The physical and chemical characteristics and stability of phytosomes were evaluated by dynamic light scattering and phytochemistry, respectively. The in vitro antioxidant activity and intracellular reactive oxygen species reduction of phytosomes and/or extracts were investigated by the DPPH and ABTS radical scavenging assays, FRAP assay, and DCFH-DA fluorescent probe. The cytotoxicity and anti-inflammatory activity of VDL and VFL phytosomes were studied by an MTT and a nitric oxide assay, respectively. Here, we first reported the total phenolic content in the dry leaf extract of N. tabacum var. Virginia was significantly greater than that of the fresh leaf extract. The HPLC analysis results revealed that VDL and VFL extracts contained 4.94 ± 0.04 and 3.13 ± 0.01 µg/mL of chlorogenic acid and 0.89 ± 0.00 and 0.24 ± 0.00 µg/mL of rutin, respectively. The phytosomes of the VDL and VFL extracts displayed stable size, polydispersity index, zeta potential values, and good chemical stability. VDL and VDL phytosomes showed higher phenolic and flavonoid contents which showed stronger DPPH and ABTS radical scavenging effects and reduced the intracellular ROS. The results suggested that the phenolic compounds are the main factor in their antioxidant activity. Both VDL and VFL phytosomes inhibited nitric oxide production induced by LPS, suggesting the anti-inflammatory activity of the phytosomes. The shape memory gel containing VDL and VFL phytosomes had good physical stability in terms of pH and viscosity. The VDL and VFL phytosomes dispersed in the shape memory gels can be considered as a promising therapeutic delivery system for protecting the skin from oxidation and reactive oxygen species.

6 citations


Journal ArticleDOI
01 Feb 2023-Gels
TL;DR: In this paper , an aqueous insoluble hydrophobic anti-inflammatory compound, ibuprofen (IBU), was investigated as the matrix-forming agent of a doxycycline hyclate (DH)-loaded solvent removal-induced in situ forming gel (ISG) using dimethyl sulfoxide (DMSO) and N-methyl pyrrolidone (NMP) as the solvents.
Abstract: Modulation with the suppression of infection and inflammation is essential to the successful treatment of periodontitis. An aqueous insoluble hydrophobic anti-inflammatory compound, i.e., ibuprofen (IBU), was investigated in this study as the matrix-forming agent of a doxycycline hyclate (DH)-loaded solvent removal-induced in situ forming gel (ISG) using dimethyl sulfoxide (DMSO) and N-methyl pyrrolidone (NMP) as the solvents. Their physicochemical properties, including pH, density, viscosity, surface tension, contact angle, water tolerance, injectability, mechanical properties, gel formation, and drug release, were determined. Their antimicrobial activities were tested using agar cup diffusion, and their anti-inflammatory activity was assessed using thermal inhibition of protein denaturation of egg albumin. Increasing the IBU content decreased the density, pH, surface tension, and contact angle but increased the viscosity, force and work of injection, and gel formation of IBU-based ISG solution. Although their water tolerance values decreased with the increase in IBU content, the addition of DH and the use of NMP led to high water tolerance. The characterization of the dried gel remnants of ISGs presented no change in IBU crystallinity and thermal properties and confirmed no chemical interaction among the components of ISGs. The obtained transformed IBU matrix prolonged the release of DH and IBU from ISGs over 7 days from its tortuously packed IBU matrix with small pores, and conformed well with Fickian diffusion mechanism. The developed DH-loaded solvent removal-induced IBU-based ISGs exhibited efficient antimicrobial activities against Staphylococcus aureus, methicillin-resistant S. aureus, Escherichia coli, Candida albicans, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans. IBU in formulation promoted the antimicrobial activity of ISGs, whereas DH and NMP promoted the anti-inflammatory activity of ISGs. Consequently, the DH-loaded solvent removal-induced IBU-based ISGs proposed in this study show great potential as an effective bioactive drug delivery system for periodontitis treatment by localized periodontal pocket injection.

5 citations


Journal ArticleDOI
01 Jan 2023-Gels
TL;DR: In this article, a method for the synthesis of ZnO nanoparticles (ZnO NPs) gels was developed, which was obtained through a sol-gel method with zinc acetate usage as a precursor.
Abstract: A method for the synthesis of ZnO nanoparticles (ZnO NPs) gels was developed. ZnO NPs were obtained through a sol–gel method with zinc acetate usage as a precursor. Optimization of the method of synthesis of ZnO NPs gel has been carried out. It was observed that the most stable ZnO NPs gels are formed at room temperature, pH = 8 and molar concentration of zinc C(Zn2+) = 0.05–0.2 M. It was shown that the addition of polysaccharide significantly affects the rheological properties and microstructure of ZnO NPs gels. We found that the optimal polysaccharide for the synthesis of ZnO NPs gels is hydroxyethyl cellulose. It is shown that the microstructure of a gel of ZnO NPs stabilized with hydroxyethyl cellulose is represented by irregularly shaped particles that are assembled into aggregates, with sizes ranging from 150 to 1400 nm. A significant hysteresis region is observed in a gel of ZnO NPs stabilized with hydroxyethyl cellulose. The process of interaction of ZnO NPs with polysaccharides was investigated. It was shown that the interaction of ZnO NPs with polysaccharides occurs through a charged hydroxyl group. In the experiment, a sample of a gel of ZnO NPs modified with hydroxyethyl cellulose was tested. It was shown that the gel of ZnO NPs modified with hydroxyethyl cellulose has a pronounced regenerative effect on burn wounds, which is significantly higher than that of the control group and the group treated with a gel of ZnO microparticles (MPs) and hydroxyethyl cellulose. It is also shown that the rate of healing of burn wounds in animals treated with gel of ZnO nanoparticles with hydroxyethyl cellulose (group 3) is 16.23% higher than in animals treated with gel of ZnO microparticles with hydroxyethyl cellulose (group 2), and 24.33% higher than in the control group treated with hydroxyethyl cellulose. The average rate of healing of burn wounds for the entire experimental period in experimental animals of group 3 is 1.26 and 1.54 times higher than in animals of group 2 and control group, respectively. An experimental study of a gel of ZnO NPs modified with hydroxyethyl cellulose has shown the effectiveness of its use in modeling the healing of skin wounds through primary tension.

5 citations


Journal ArticleDOI
23 Jan 2023-Gels
TL;DR: In this paper , the bio-based natural materials and fine fabrication techniques that are currently used in developing scaffolds for tissue regeneration applications, along with the number of articles published on each material, are briefly discussed.
Abstract: Tissue damage and organ failure are major problems that many people face worldwide. Most of them benefit from treatment related to modern technology’s tissue regeneration process. Tissue engineering is one of the booming fields widely used to replace damaged tissue. Scaffold is a base material in which cells and growth factors are embedded to construct a substitute tissue. Various materials have been used to develop scaffolds. Bio-based natural materials are biocompatible, safe, and do not release toxic compounds during biodegradation. Therefore, it is highly recommendable to fabricate scaffolds using such materials. To date, there have been no singular materials that fulfill all the features of the scaffold. Hence, combining two or more materials is encouraged to obtain the desired characteristics. To design a reliable scaffold by combining different materials, there is a need to choose a good fabrication technique. In this review article, the bio-based natural materials and fine fabrication techniques that are currently used in developing scaffolds for tissue regeneration applications, along with the number of articles published on each material, are briefly discussed. It is envisaged to gain explicit knowledge of developing scaffolds from bio-based natural materials for tissue regeneration applications.

5 citations


Journal ArticleDOI
01 Feb 2023-Gels
TL;DR: In this article , a new biocomposite aerogel (Amf-CNF/LS) was prepared using a chemically cross-linking method between the amino-functionalized cellulose nanofibers and lignosulfonates (LS).
Abstract: Due to the increasingly widespread water pollutants and the high cost of treatment methods, there is a demand for new, inexpensive, renewable, and biodegradable adsorbent materials for the purification of wastewater contaminants. In this study, a new biocomposite aerogel (Amf-CNF/LS) was prepared using a chemically cross-linking method between the amino-functionalized cellulose nanofibers (Amf-CNF) and lignosulfonates (LS). The physical and chemical properties of the prepared aerogel were investigated using several techniques including elemental analysis, scanning electron microscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and N2 adsorption-desorption analysis. The Amf-CNF/LS aerogel was then applied for the removal of methylene blue (MB), rhodamine B dye (RhB), and the heavy metal cadmium ion (Cd2+) from synthetic wastewater solutions. The adsorption parameters controlling the adsorption process including the pH, contact time, adsorbent dosage, and adsorbate concen-tration were optimized. High adsorption kinetics and isotherms were observed, with the adsorption isotherms of the Amf-CNF/LS aerogel fitting the Langmuir model with maximum adsorption capacities of 170.94, 147.28, and 129.87 mg/g for MB, RhB, and Cd2+, respectively. These results show that Amf-CNF/LS aerogel is a promising green and inexpensive adsorbent for MB, RhB, and Cd2+ removal from wastewater.

4 citations


Journal ArticleDOI
21 Jan 2023-Gels
TL;DR: In this paper , the grafting of a stimuli-responsive polymer (poly(dimethylaminoethyl methacrylate)) onto cellulose was achieved by performing free radical polymerization of a vinyl/divinyl monomer in cellulose solution.
Abstract: The grafting of a stimuli-responsive polymer (poly(dimethylaminoethyl methacrylate)) onto cellulose was achieved by performing free radical polymerization of a vinyl/divinyl monomer in cellulose solution. The grafting and crosslinking efficiency in the material have been increased by subsequent irradiation of the samples with ionizing radiation (doses of 10, 30, or 100 kGy). The relative amount of poly(dimethylaminoethyl methacrylate) in the prepared hydrogels was determined by infrared spectroscopy. The swelling behavior of the hydrogels was studied thoroughly, including microgelation extent, equilibrium swelling, and reswelling degree, as well as the dependence on the gelation procedure. The dynamic viscoelastic behavior of prepared hydrogels was also studied. The tan δ values indicate a solid-like behavior while the obtained hydrogels have a complex modulus in the range of 14–39 kPa, which is suitable for hydrogels used in biomedical applications. In addition, the incorporation of Ag particles and the adsorption of Fe3+ ions were tested to evaluate the additional functionalities of the prepared hydrogels. It was found that the introduction of PDMAEMA to the hydrogels enhanced their ability to synthesize Ag particles and absorb Fe3+ ions, providing a platform for the potential preparation of hydrogels for the treatment of wounds.

4 citations


Journal ArticleDOI
01 Feb 2023-Gels
TL;DR: In this article , the biomedical applications of polysaccharide-based hydrogels containing the two aforementioned natural polymers, chitosan and pectin, in the fields of tissue engineering and 3D in vitro modeling are discussed.
Abstract: Hydrogels are fascinating biomaterials that can act as a support for cells, i.e., a scaffold, in which they can organize themselves spatially in a similar way to what occurs in vivo. Hydrogel use is therefore essential for the development of 3D systems and allows to recreate the cellular microenvironment in physiological and pathological conditions. This makes them ideal candidates for biological tissue analogues for application in the field of both tissue engineering and 3D in vitro models, as they have the ability to closely mimic the extracellular matrix (ECM) of a specific organ or tissue. Polysaccharide-based hydrogels, because of their remarkable biocompatibility related to their polymeric constituents, have the ability to interact beneficially with the cellular components. Although the growing interest in the use of polysaccharide-based hydrogels in the biomedical field is evidenced by a conspicuous number of reviews on the topic, none of them have focused on the combined use of two important polysaccharides, chitosan and pectin. Therefore, the present review will discuss the biomedical applications of polysaccharide-based hydrogels containing the two aforementioned natural polymers, chitosan and pectin, in the fields of tissue engineering and 3D in vitro modeling.

Journal ArticleDOI
01 Jan 2023-Gels
TL;DR: The development of an ideal hydrogel wound dressing with excellent characteristics is currently a significant demand in wound therapy as discussed by the authors , and the ideal wound dressing must provide a moist environment between the wound and the dressing, promote wound healing, absorb excess exudate and toxins, be completely sterile, and not adhere to the wound.
Abstract: The development of an ideal hydrogel wound dressing with excellent characteristics is currently a significant demand in wound therapy. The ideal hydrogel wound dressing must provide a moist environment between the wound and the dressing, promote wound healing, absorb excess exudate and toxins, be completely sterile, and not adhere to the wound. The evolution and current status of research on hydrogel wound dressings obtained exclusively through production by ionizing radiation are discussed in this paper review, along with the preparation methods, properties, standard characterization techniques, and their applications in wound dressing. First, we described the methods for synthesizing hydrogel wound dressings with ionizing radiation. Then, standard methods of characterization of hydrogel wound dressings such as gel fraction, swelling degree, sol–gel analysis, rheological properties, morphology, moisture retention capability, and water vapor transmission rate have been investigated. In the end, specific attention was paid to the drug release, antibacterial performance, and cytotoxicity of hydrogels. Moreover, the application of hydrogel in regenerative medicine as wound healing dressing was covered.

Journal ArticleDOI
24 Jan 2023-Gels
TL;DR: A review of the incorporation of nanoparticles, as well as other nanoscale additive materials, to printable bioinks for tissue engineering applications, specifically bone, cartilage, dental, and cardiovascular tissues, is presented in this paper .
Abstract: Bioprinting aims to provide new avenues for regenerating damaged human tissues through the controlled printing of live cells and biocompatible materials that can function therapeutically. Polymeric hydrogels are commonly investigated ink materials for 3D and 4D bioprinting applications, as they can contain intrinsic properties relative to those of the native tissue extracellular matrix and can be printed to produce scaffolds of hierarchical organization. The incorporation of nanoscale material additives, such as nanoparticles, to the bulk of inks, has allowed for significant tunability of the mechanical, biological, structural, and physicochemical material properties during and after printing. The modulatory and biological effects of nanoparticles as bioink additives can derive from their shape, size, surface chemistry, concentration, and/or material source, making many configurations of nanoparticle additives of high interest to be thoroughly investigated for the improved design of bioactive tissue engineering constructs. This paper aims to review the incorporation of nanoparticles, as well as other nanoscale additive materials, to printable bioinks for tissue engineering applications, specifically bone, cartilage, dental, and cardiovascular tissues. An overview of the various bioinks and their classifications will be discussed with emphasis on cellular and mechanical material interactions, as well the various bioink formulation methodologies for 3D and 4D bioprinting techniques. The current advances and limitations within the field will be highlighted.

Journal ArticleDOI
26 Jan 2023-Gels
TL;DR: In this paper , the current status of different hydrogels for the production of flexible supercapacitors has been discussed and the electrochemical properties such as capacitance, energy density and cycling ability have been given attention.
Abstract: Smart hydrogels with high electrical conductivity, which can be a real source of power while also collecting and storing the diverse sources of energy with ultrahigh stretchability, strong self-healability, low-temperature tolerance, and excellent mechanical properties, are great value for tailored wearable cloths. Considerable effort has been dedicated in both scientific and technological developments of electroconductive hydrogels for supercapacitor applications in the past few decades. The key to realize those functionalities depends on the processing of hydrogels with desirable electrochemical properties. The various hydrogel materials with such properties are now emerging and investigated by various scholars. The last decade has witnessed the development of high-performance supercapacitors using hydrogels. Here, in this review, the current status of different hydrogels for the production of flexible supercapacitors has been discussed. The electrochemical properties such as capacitance, energy density and cycling ability has been given attention. Diverse hydrogels, with their composites such as carbon-based hydrogels, cellulose-based hydrogels, conductive-polymer-based hydrogels and other hydrogels with excellent electromechanical properties are summarized. One could argue that hydrogels have played a central, starring role for the assembly of flexible supercapacitors for energy storage applications. This work stresses the importance of producing flexible supercapacitors for wearable clothing applications and the current challenges of hydrogel-based supercapacitors. The results of the review depicted that hydrogels are the next materials for the production of the flexible supercapacitor in a more sustainable way.

Journal ArticleDOI
01 Mar 2023-Gels
TL;DR: In this article , the properties of hydrogels based on chitosan (CHT) and the polymer of β cyclodextrin (PCD) were combined for local delivery of cinnamaldehyde (CN) in diabetic foot ulcers.
Abstract: Diabetic foot ulcers (DFU) are among the most common complications in diabetic patients and affect 6.8% of people worldwide. Challenges in the management of this disease are decreased blood diffusion, sclerotic tissues, infection, and antibiotic resistance. Hydrogels are now being used as a new treatment option since they can be used for drug delivery and to improve wound healing. This project aims to combine the properties of hydrogels based on chitosan (CHT) and the polymer of β cyclodextrin (PCD) for local delivery of cinnamaldehyde (CN) in diabetic foot ulcers. This work consisted of the development and characterisation of the hydrogel, the evaluation of the CN release kinetics and cell viability (on a MC3T3 pre-osteoblast cell line), and the evaluation of the antimicrobial and antibiofilm activity (S. aureus and P. aeruginosa). The results demonstrated the successful development of a cytocompatible (ISO 10993-5) injectable hydrogel with antibacterial (99.99% bacterial reduction) and antibiofilm activity. Furthermore, a partial active molecule release and an increase in hydrogel elasticity were observed in the presence of CN. This leads us to hypothesise that a reaction between CHT and CN (a Schiff base) can occur and that CN could act as a physical crosslinker, thus improving the viscoelastic properties of the hydrogel and limiting CN release.

Journal ArticleDOI
01 Feb 2023-Gels
TL;DR: In this paper , the authors evaluated the colonization and biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa in chronic wounds of diabetic patients treated with a bioactive dressing, which consisted of a 2% carboxymethylcellulose (CMC) hydrogel loaded with epidermal growth factor (EGF).
Abstract: Diabetic patients frequently develop wounds, which can be colonized by bacteria, mainly Staphylococcus aureus and Pseudomonas aeruginosa, with the ability to form biofilms. This study aimed to evaluate the colonization and biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa in chronic wounds of diabetic patients treated with a bioactive dressing (EGF-CMC), which consisted of a 2% carboxymethylcellulose (CMC) hydrogel loaded with epidermal growth factor (EGF). This randomized clinical trial was conducted with 25 participants: 14 treated with EGF-CMC hydrogel and 11 treated with CMC hydrogel for 12 weeks. Participants with type 2 diabetes mellitus were selected. All had diabetic foot ulcers or chronic venous ulcers. Swab collections were performed on weeks 1, 6, and 12. The laboratory analyses included the identification of strains, microbial quantification, virulence gene investigation, and the evaluation of biofilm formation. In total, 13 S. aureus strains and 15 P. aeruginosa strains were isolated. There were no statistically significant differences regarding bacterial loads and virulence genes. However, EGF-CMC-hydrogel-treated wounds were colonized by strains with lower biofilm formation abilities. The probability of isolating biofilm-producing strains from CMC-hydrogel-treated wounds was 83% greater than the probability of isolating biofilm-producing strains from EGF-CMC-treated wounds.

Journal ArticleDOI
01 Feb 2023-Gels
TL;DR: In this article , the authors synthesize and characterize Diallyldimethylammonium chloride-acrylic acid (DADMAC-AAc-APTAC) superabsorbent hydrogels by applying gamma radiation of different doses to two different compositions of monomers.
Abstract: The gamma radiation technique is simple and time-saving for the synthesis of pure hydrogels. The present work focuses on synthesizing and characterizing Diallyldimethylammonium Chloride-Acrylic acid-(3-Acrylamidopropyl) trimethylammonium Chloride (DADMAC-AAc-APTAC) superabsorbent hydrogels. The hydrogels were synthesized by applying gamma radiation of different doses (2 kGy to 30 kGy) to two different compositions of monomers. The equilibrium swelling was found to be 33483.48% of dried gel for a 1:0.5:1 composition ratio of monomers at a 2 kGy radiation dose. Therefore, on the basis of equilibrium swelling, 2 kGy is the optimum radiation dose for synthesizing the hydrogel. Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) spectroscopy, and X-ray diffraction (XRD) characterization techniques were used to analyze and confirm the structure of the hydrogel. Thermogravimetric analysis (TGA) and Scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) clearly showed the thermal stability and surface morphology of the gel. Therefore, it can be concluded that hydrogels can be used in metal adsorption, drug delivery, and other fields of study.

Journal ArticleDOI
01 Feb 2023-Gels
TL;DR: In this paper , a wound healing dressing with chitosan (CS) and polyvinyl alcohol (PVA) was created, which is loaded with L-arginine (L-arg) and caffeine (Caff) delivery.
Abstract: The excellent biological properties of chitosan (CS) together with the increased oxygen permeability of polyvinyl alcohol (PVA) were the prerequisites for the creation of a wound healing dressing that would also function as a system for L-arginine (L-arg) and caffeine (Caff) delivery. Using the freezing/thawing method, 12 hydrogels were obtained in PVA:CS polymer ratios of 90:10, 75:25, and 60:40, and all were loaded with L-arg, Caff, and the mixture of L-arg and Caff, respectively. Afterwards, an inorganic material (zeolite–Z) was added to the best polymeric ratio (75:25) and loaded with active substances. The interactions between the constituents of the hydrogels were analyzed by FTIR spectroscopy, the uniformity of the network was highlighted by the SEM technique, and the dynamic water vapor sorption capacity was evaluated. In the presence of the inorganic material, the release profile of the active substances is delayed, and in vitro permeation kinetics proves that the equilibrium state is not reached even after four hours. The synergy of the constituents in the polymer network recommends that they be used in medical applications, such as wound healing dressings.

Journal ArticleDOI
26 Jan 2023-Gels
TL;DR: In this article , gels based on xanthan gum and poloxamer 407 have been developed and characterized in order to convey natural antioxidant molecules included in niosomes, and the studies were conducted to evaluate how the vesicular systems affect the release of the active ingredient and which formulation is most suitable for cutaneous application.
Abstract: In the present study, gels based on xanthan gum and poloxamer 407 have been developed and characterized in order to convey natural antioxidant molecules included in niosomes. Specifically, the studies were conducted to evaluate how the vesicular systems affect the release of the active ingredient and which formulation is most suitable for cutaneous application. Niosomes, composed of Span 20 or Tween 20, were produced through the direct hydration method, and therefore, borate buffer or a micellar solution of poloxamer 188 was used as the aqueous phase. The niosomes were firstly characterized in terms of morphology, dimensional and encapsulation stability. Afterwards, gels based on poloxamer 407 or xanthan gum were compared in terms of spreadability and adhesiveness. It was found to have greater spreadability for gels based on poloxamer 407 and 100% adhesiveness for those based on xanthan gum. The in vitro diffusion of drugs studied using Franz cells associated with membranes of mixed cellulose esters showed that the use of a poloxamer micellar hydration phase determined a lower release as well as the use of Span 20. The thickened niosomes ensured controlled diffusion of the antioxidant molecules. Lastly, the in vivo irritation test confirmed the safeness of niosomal gels after cutaneous application.

Journal ArticleDOI
28 Feb 2023-Gels
TL;DR: In this article , a facile and cost-effective strategy is employed to in situ prepare the Ni/Fe oxyhydroxide anchored on nitrogen-doped carbon aerogel (NiFeOx(OH)y@NCA) for OER electrocatalysis.
Abstract: It remains a big challenge to develop non-precious metal catalysts for oxygen evolution reaction (OER) in energy storage and conversion systems. Herein, a facile and cost-effective strategy is employed to in situ prepare the Ni/Fe oxyhydroxide anchored on nitrogen-doped carbon aerogel (NiFeOx(OH)y@NCA) for OER electrocatalysis. The as-prepared electrocatalyst displays a typical aerogel porous structure composed of interconnected nanoparticles with a large BET specific surface area of 231.16 m2·g−1. In addition, the resulting NiFeOx(OH)y@NCA exhibits excellent OER performance with a low overpotential of 304 mV at 10 mA·cm−2, a small Tafel slope of 72 mV·dec−1, and excellent stability after 2000 CV cycles, which is superior to the commercial RuO2 catalyst. The much enhanced OER performance is mainly derived from the abundant active sites, the high electrical conductivity of the Ni/Fe oxyhydroxide, and the efficient electronic transfer of the NCA structure. Density functional theory (DFT) calculations reveal that the introduction of the NCA regulates the surface electronic structure of Ni/Fe oxyhydroxide and increases the binding energy of intermediates as indicated by the d-band center theory. This work provides a new method for the construction of advanced aerogel-based materials for energy conversion and storage.

Journal ArticleDOI
01 Feb 2023-Gels
TL;DR: In this article , the authors report the recent progress of natural polymeric Fe3O4 magnetic nanoparticles in drug delivery applications, based on different polymers origins, such as animals, plants, and microbes (Xanthan gum and Dextran).
Abstract: Natural polymers have received a great deal of interest for their potential use in the encapsulation and transportation of pharmaceuticals and other bioactive compounds for disease treatment. In this perspective, the drug delivery systems (DDS) constructed by representative natural polymers from animals (gelatin and hyaluronic acid), plants (pectin and starch), and microbes (Xanthan gum and Dextran) are provided. In order to enhance the efficiency of polymers in DDS by delivering the medicine to the right location, reducing the medication’s adverse effects on neighboring organs or tissues, and controlling the medication’s release to stop the cycle of over- and under-dosing, the incorporation of Fe3O4 magnetic nanoparticles with the polymers has engaged the most consideration due to their rare characteristics, such as easy separation, superparamagnetism, and high surface area. This review is designed to report the recent progress of natural polymeric Fe3O4 magnetic nanoparticles in drug delivery applications, based on different polymers’ origins.

Journal ArticleDOI
01 Mar 2023-Gels
TL;DR: In this article , the effect of Sage (Salvia sclarea) essential oil (SEO) on the physiochemical and antioxidant properties of sodium alginate (SA) and casein (CA) based films was examined using TGA, texture analyzer, colorimeter, SEM, FTIR, and XRD.
Abstract: The aim of this study was to examine the effect of Sage (Salvia sclarea) essential oil (SEO) on the physiochemical and antioxidant properties of sodium alginate (SA) and casein (CA) based films. Thermal, mechanical, optical, structural, chemical, crystalline, and barrier properties were examined using TGA, texture analyzer, colorimeter, SEM, FTIR, and XRD. Chemical compounds of the SEO were identified via GC–MS, the most important of which were linalyl acetate (43.32%) and linalool (28.51%). The results showed that incorporating SEO caused a significant decrease in tensile strength (1.022–0.140 Mpa), elongation at break (28.2–14.6%), moisture content (25.04–14.7%) and transparency (86.1–56.2%); however, WVP (0.427–0.667 × 10−12 g·cm/cm2·s·Pa) increased. SEM analysis showed that the incorporation of SEO increased the homogeneousness of films. TGA analysis showed that SEO-loaded films showed better thermal stability than others. FTIR analysis revealed the compatibility between the components of the films. Furthermore, increasing the concentration of SEO increased the antioxidant activity of the films. Thus, the present film shows a potential application in the food packaging industry.

Journal ArticleDOI
19 Jan 2023-Gels
TL;DR: The use of 3D bioprinting technology combined with the principle of tissue engineering is important for the construction of tissue or organ regeneration microenvironments as mentioned in this paper , however, there is still a lack of summary of the latest 3D printing technology and the properties of hydrogel materials.
Abstract: The use of three-dimensional bioprinting technology combined with the principle of tissue engineering is important for the construction of tissue or organ regeneration microenvironments. As a three-dimensional bioprinting ink, hydrogels need to be highly printable and provide a stiff and cell-friendly microenvironment. At present, hydrogels are used as bioprinting inks in tissue engineering. However, there is still a lack of summary of the latest 3D printing technology and the properties of hydrogel materials. In this paper, the materials commonly used as hydrogel bioinks; the advanced technologies including inkjet bioprinting, extrusion bioprinting, laser-assisted bioprinting, stereolithography bioprinting, suspension bioprinting, and digital 3D bioprinting technologies; printing characterization including printability and fidelity; biological properties, and the application fields of bioprinting hydrogels in bone tissue engineering, skin tissue engineering, cardiovascular tissue engineering are reviewed, and the current problems and future directions are prospected.

Journal ArticleDOI
18 Jan 2023-Gels
TL;DR: In this paper , a heterogeneous composite flooding system with preformed particle gels (PPG) and polymers according to the technical approach of plugging and flooding combination was developed to significantly improve oil recovery.
Abstract: After tertiary recovery from the oilfields, improving the production of the remaining hydrocarbon is always challenging. To significantly improve oil recovery, a heterogeneous composite flooding system has been developed with preformed particle gels (PPG) and polymers according to the technical approach of plugging and flooding combination. In addition, an oil saturation monitoring device and a large-scale 3D physical model were designed to better evaluate the performance of the technique. The evaluation results show that the viscosity, stability, and elasticity of the heterogeneous composite flooding system are better than the single polymer system. In addition, both systems exhibit pseudoplastic fluid characteristics and follow the principle of shear thinning. The results of seepage experiments showed that PPG migrates alternately in porous media in the manner of “piling plugging-pressure increasing-deformation migration”. The heterogeneous composite system can migrate to the depths of the oil layer, which improves the injection profile. In the visualization experiment, the heterogeneous composite system preferentially flowed into the high-permeability layer, which increased the seepage resistance and forced the subsequent fluid to flow into the medium and low permeability layers. The average saturation of the high, medium, and low permeability layers decreased by 4.74%, 9.51%, and 17.12%, respectively, and the recovery factor was further improved by 13.56% after the polymer flooding.

Journal ArticleDOI
24 Jan 2023-Gels
TL;DR: The Diels-Alder (DA) reaction is a promising tool for obtaining covalently crosslinked hydrogels due to its reaction bioorthogonality, the absence of by-products, and the application of mild conditions without a catalyst as discussed by the authors .
Abstract: The Diels–Alder (DA) reaction is a promising tool for obtaining covalently crosslinked hydrogels due to its reaction bioorthogonality, the absence of by-products, and the application of mild conditions without a catalyst. The resulting hydrogels are in demand for use in various fields of materials science and biomedicine. While the dynamic nature of the cycloaddition of diene and dienophile has previously been used extensively for the fabrication of self-healing materials, it has only recently spread to the expansion of the functional properties of polymer gels for bioapplications. This review describes strategies and recent examples of obtaining hydrogels based on the DA reaction, demonstrating that the emerging functional properties go beyond self-healing. The types of classifications of hydrogels are listed, depending on the type of reaction and the nature of the components. Examples of obtaining hydrogels based on the normal and inverse electron-demand DA reaction, as well as the application of hydrogels for cell culture, drug delivery, injectable gels, and wound dressings, are considered. In conclusion, possible developmental directions are discussed, including the use of diene–dienophile pairs with a low temperature for the reversal of DA reaction, the modification of nanoparticles by diene and/or dienophile fragments, and new applications such as ink for 3D printing, sensing hydrogels, etc.

Journal ArticleDOI
27 Jan 2023-Gels
TL;DR: In this paper , the 3-glycidyloxypropyl (GPTMS) and various long alkyl-chain alkoxysilanes were employed for the fabrication in the presence of a catalyst of a water-based superhydrophobic finishing for polyester fabrics with a simple sol-gel, non-fluorinated, sustainable approach and the dip-pad-dry-cure method.
Abstract: Polyester fibers are widely employed in a multitude of sectors and applications from the technical textiles to everyday life thanks to their durability, strength, and flexibility. Despite these advantages, polyester lacks in dyeability, adhesion of coating, hydrophilicity, and it is characterized by a low wettability respect to natural fibers. On this regard, beyond the harmful hydrophobic textile finishings of polyester fabrics containing fluorine-compounds, and in order to avoid pre-treatments, such as laser irradiation to improve their surface properties, research is moving towards the development of fluorine-free and safer coatings. In this work, the (3-glycidyloxypropyl)trimethoxysilane (GPTMS) and various long alkyl-chain alkoxysilanes were employed for the fabrication in the presence of a catalyst of a water-based superhydrophobic finishing for polyester fabrics with a simple sol-gel, non-fluorinated, sustainable approach and the dip-pad-dry-cure method. The finished polyester fabrics surface properties were investigated by static and dynamic water repellency tests. Additionally, the resistance to common water-based liquids, abrasion resistance, moisture adsorption, and air permeability measurements were performed. Scanning electron microscopy was employed to examine the micro- and nano-morphology of the functionalized polyester fabrics surfaces. The obtained superhydrophobic finishings displayed high water-based stain resistance as well as good hydrophobicity after different cycles of abrasion.

Journal ArticleDOI
27 Feb 2023-Gels
TL;DR: In this article , the current research and application status of primal hydrogels in the field of skin repair in recent years are comprehensively reviewed, starting from the structure and properties of collagen, the preparation, structural properties, and application of collagen-based hydrogel in skin injury repair are emphatically described.
Abstract: The repair of skin injury has always been a concern in the medical field. As a kind of biopolymer material with a special network structure and function, collagen-based hydrogel has been widely used in the field of skin injury repair. In this paper, the current research and application status of primal hydrogels in the field of skin repair in recent years are comprehensively reviewed. Starting from the structure and properties of collagen, the preparation, structural properties, and application of collagen-based hydrogels in skin injury repair are emphatically described. Meanwhile, the influences of collagen types, preparation methods, and crosslinking methods on the structural properties of hydrogels are emphatically discussed. The future and development of collagen-based hydrogels are prospected, which is expected to provide reference for the research and application of collagen-based hydrogels for skin repair in the future.

Journal ArticleDOI
01 Apr 2023-Gels
TL;DR: In this article , the potential of the applicability of green aerogels in water treatment's ion removal section was investigated, where three families of aeroglobels originating from nanocellulose (NC), chitosan (CS), and graphene (G) were investigated.
Abstract: Water scarcity is a global problem affecting millions of people. It can lead to severe economic, social, and environmental consequences. It can also have several impacts on agriculture, industry, and households, leading to a decrease in human quality of life. To address water scarcity, governments, communities, and individuals must work in synergy for the sake of water resources conservation and the implementation of sustainable water management practices. Following this urge, the enhancement of water treatment processes and the development of novel ones is a must. Here, we have investigated the potential of the applicability of “Green Aerogels” in water treatment’s ion removal section. Three families of aerogels originating from nanocellulose (NC), chitosan (CS), and graphene (G) are investigated. In order to reveal the difference between aerogel samples in-hand, a “Principal Component Analysis” (PCA) has been performed on the physical/chemical properties of aerogels, from one side, and the adsorption features, from another side. Several approaches and data pre-treatments have been considered to overcome any bias of the statistical method. Following the different followed approaches, the aerogel samples were located in the center of the biplot and were surrounded by different physical/chemical and adsorption properties. This would probably indicate a similar efficiency in the ion removal of the aerogels in-hand, whether they were nanocellulose-based, chitosan-based, or even graphene-based. In brief, PCA has shown a similar efficiency of all the investigated aerogels towards ion removal. The advantage of this method is its capacity to engage and seek similarities/dissimilarities between multiple factors, with the elimination of the shortcomings for the tedious and time-consuming bidimensional data visualization.

Journal ArticleDOI
23 Jan 2023-Gels
TL;DR: In this article , a flexible all-solid-state asymmetric supercapacitor (FASC) device has been successfully fabricated via full recycling of heated tobacco waste (HTW).
Abstract: In this study, a flexible all-solid-state asymmetric supercapacitor (FASC) device has been successfully fabricated via full recycling of heated tobacco waste (HTW). Tobacco leaves and cellulose acetate tubes have been successfully carbonized (HTW-C) and mixed with metal oxides (MnO2 and Fe3O4) to obtain highly active materials for supercapacitors. Moreover, poly(lactic acid) (PLA) filters have been successfully dissolved in an organic solvent and mixed with the as-prepared active materials using a simple paste mixing method. In addition, flexible MnO2- and Fe3O4-mixed HTW-C/PLA electrodes (C-MnO2/PLA and C-Fe3O4/PLA) have been successfully fabricated using the drop-casting method. The as-synthesized flexible C-MnO2/PLA and C-Fe3O4/PLA electrodes have exhibited excellent electrical conductivity of 378 and 660 μS cm−1, and high specific capacitance of 34.8 and 47.9 mF cm−2 at 1 mA cm−2, respectively. A practical FASC device (C-MnO2/PLA//C-Fe3O4/PLA) has been assembled by employing the C-MnO2/PLA as the positive electrode and C-Fe3O4/PLA as the negative electrode. The as-prepared FASC device showed a remarkable capacitance of 5.80 mF cm−2 at 1 mA cm−2. Additionally, the FASC device manifests stable electrochemical performance under harsh bending conditions, verifying the superb flexibility and sustainability of the device. To the best of our knowledge, this is the first study to report complete recycling of heated tobacco waste to prepare the practical FASC devices. With excellent electrochemical performance, the experiments described in this study successfully demonstrate the possibility of recycling new types of biomass in the future.

Journal ArticleDOI
24 Feb 2023-Gels
TL;DR: In this article , applied oleogels in foods and recent proposals to circumvent some disadvantages are presented, as reaching consumer demand for healthier products using an easy-to-use and low-cost material can be intriguing for the food industry.
Abstract: Fats and oils in food give them flavor and texture while promoting satiety. Despite the recommendation to consume predominantly unsaturated lipid sources, its liquid behavior at room temperature makes many industrial applications impossible. Oleogel is a relatively new technology applied as a total or partial replacement for conventional fats directly related to cardiovascular diseases (CVD) and inflammatory processes. Some of the complications in developing oleogels for the food industry are finding structuring agents Generally Recognized as Safe (GRAS), viable economically, and that do not compromise the oleogel palatability; thus, many studies have shown the different possibilities of applications of oleogel in food products. This review presents applied oleogels in foods and recent proposals to circumvent some disadvantages, as reaching consumer demand for healthier products using an easy-to-use and low-cost material can be intriguing for the food industry.