scispace - formally typeset
Search or ask a question
JournalISSN: 1676-5680

Genetics and Molecular Research 

Research Foundation of Ribeirão Preto
About: Genetics and Molecular Research is an academic journal published by Research Foundation of Ribeirão Preto. The journal publishes majorly in the area(s): Population & Genetic diversity. It has an ISSN identifier of 1676-5680. Over the lifetime, 7990 publications have been published receiving 86810 citations.


Papers
More filters
Journal Article
TL;DR: The latest data on staphylococcal enterotoxins and some papers exemplifying the interactions between S. aureus and the food matrix are reviewed; environmental factors affecting staphlyococcalEnterotoxin production are discussed.
Abstract: Food-borne diseases are of major concern worldwide. To date, around 250 different food-borne diseases have been described, and bacteria are the causative agents of two thirds of food-borne disease outbreaks. Among the predominant bacteria involved in these diseases, Staphylococcus aureus is a leading cause of gastroenteritis resulting from the consumption of contaminated food. Staphylococcal food poisoning is due to the absorption of staphylococcal enterotoxins preformed in the food. Here, we briefly review the latest data on staphylococcal enterotoxins and some papers exemplifying the interactions between S. aureus and the food matrix; environmental factors affecting staphylococcal enterotoxin production are discussed.

1,282 citations

Journal ArticleDOI
TL;DR: Screening for MC4R could be important for directing the carriers of mutations towards therapy including partial agonists of theMC4R that could normalize their appetite and inhibit compulsive eating.
Abstract: Obesity is a major public health concern; despite evidence of high heritability, the genetic causes of obesity remain unclear. In this study, we assessed the presence of mutations in three genes involved in the hypothalamic leptin-melanocortin regulation pathway (leptin, LEP; leptin receptor, LEPR; and melanocortin-4 receptor, MC4R), which is important for energy homeostasis in the body, in a group of patients with severe obesity. For this study, we selected 77 patients who had undergone bariatric surgery and had a pre-operative body mass index (BMI) >35 kg/m2, early onset and a family history of being overweight. Candidate genes were screened by direct sequence analysis to search for rare genetic variations. The common LEP -2548 G/A polymorphism was also evaluated for its influence on the BMI (in obesity patients) and for obesity risk, using a case-control study involving 117 healthy individuals. Two different non-synonymous alterations in MC4R were found in two patients: the p.(Thr112Met), previously described in the literature as a probable gene involved in the obesity phenotype, and the novel p.(Tyr302Asp) variant, predicted to be pathogenic by in silico evaluations and family segregation studies. The LEP -2548 G/A polymorphism was not associated with the BMI or obesity risk. In conclusion, we have reported a novel mutation in MC4R in a family of Italian patients with severe obesity. Screening for MC4R could be important for directing the carriers of mutations towards therapy including partial agonists of the MC4R that could normalize their appetite and inhibit compulsive eating. Next-generation sequencing could be used to clarify the genetic basis of obesity in the future.

361 citations

Journal Article
TL;DR: Homologues of the resistance-nodulation-division systems of P. aeruginosa have been found in Burkholderia cepacia, B. pseudomallei, Stenotrophomonas maltophilia, and the nonpathogen P. putida, where they play roles in resistance to antimicrobials and/or organic solvents.
Abstract: Pseudomonas aeruginosa is an opportunistic human pathogen exhibiting innate resistance to multiple antimicrobial agents. This intrinsic multidrug resistance is caused by synergy between a low-permeability outer membrane and expression of a number of broadly-specific multidrug efflux (Mex) systems, including MexAB-OprM and MexXY-OprM. In addition to this intrinsic resistance, these and three additional systems, MexCD-OprJ, MexEF-OprN and MexJK-OprM promote acquired multidrug resistance as a consequence of hyper-expression of the efflux genes by mutational events. In addition to antibiotics, these pumps export biocides, dyes, detergents, metabolic inhibitors, organic solvents and molecules involved in bacterial cell-cell communication. Homologues of the resistance-nodulation-division systems of P. aeruginosa have been found in Burkholderia cepacia, B. pseudomallei, Stenotrophomonas maltophilia, and the nonpathogen P. putida, where they play roles in resistance to antimicrobials and/or organic solvents. Despite intensive studies of these multidrug efflux systems over the past several years, their precise molecular architectures, their modes of regulation of expression and their natural functions remain largely unknown.

303 citations

Journal Article
TL;DR: The potential for bioremediation applications of the microbial mer operon has been long recognized; consequently, Escherichia coli and other wild and genetically engineered organisms for the biOREmediation of Hg2+-contaminated environments have been assayed by several laboratories as mentioned in this paper.
Abstract: Mercury is present in the environment as a result of natural processes and from anthropogenic sources. The amount of mercury mobilized and released into the biosphere has increased since the beginning of the industrial age. Generally, mercury accumulates upwards through aquatic food chains, so that organisms at higher trophic levels have higher mercury concentrations. Some bacteria are able to resist heavy metal contamination through chemical transformation by reduction, oxidation, methylation and demethylation. One of the best understood biological systems for detoxifying organometallic or inorganic compounds involves the mer operon. The mer determinants, RTPCDAB, in these bacteria are often located in plasmids or transposons and can also be found in chromosomes. There are two classes of mercury resistance: narrow-spectrum specifies resistance to inorganic mercury, while broad-spectrum includes resistance to organomercurials, encoded by the gene merB. The regulatory gene merR is transcribed from a promoter that is divergently oriented from the promoter for the other mer genes. MerR regulates the expression of the structural genes of the operon in both a positive and a negative fashion. Resistance is due to Hg2+ being taken up into the cell and delivered to the NADPH-dependent flavoenzyme mercuric reductase, which catalyzes the two-electron reduction of Hg2+ to volatile, low-toxicity Hg0. The potential for bioremediation applications of the microbial mer operon has been long recognized; consequently, Escherichia coli and other wild and genetically engineered organisms for the bioremediation of Hg2+-contaminated environments have been assayed by several laboratories.

218 citations

Journal ArticleDOI
TL;DR: The identification of [(+)-7-iso-JA-L-Ile] as the active biological hormonal form of jasmonate fills the greatest gap in knowledge about the signaling mechanism that is responsible for the activation of downstream genes in the jasMonate-signaling cascade.
Abstract: The plant hormones jasmonic acid and methyl jasmonate, along with their intermediate compounds, produced in the octadecanoid pathway, are important signaling molecules that are collectively called jasmonates. These are widespread in the plant kingdom and play crucial roles in biotic/abiotic stress responses, as well as in processes related to plant growth and development. Recently, it has been shown that jasmonates are also involved in reproductive processes. We present the most recent findings related to the biosynthesis, regulation and signaling mechanisms of jasmonates. Additionally, we discuss the identification of [(+)-7-iso-JA-L-Ile] as the active biological hormonal form of jasmonate; this fills the greatest gap in our knowledge about the signaling mechanism that is responsible for the activation of downstream genes in the jasmonate-signaling cascade. The identification of several Arabidopsis thaliana mutants was crucial to the elucidation of the signaling mechanisms involved in jasmonate-mediated responses. Finally, the involvement of jasmonates in the reproductive process of Nicotiana tabacum L. is briefly discussed, since some of the main enzymes of the jasmonic acid biosynthesis pathway were identified in a stigma/style expressed sequence tag database (TOBEST) of this Solanaceae species.

213 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202235
202123
202067
2019151
2018131
2017484