scispace - formally typeset
Search or ask a question
JournalISSN: 2053-3713

Healthcare technology letters 

Institution of Engineering and Technology
About: Healthcare technology letters is an academic journal published by Institution of Engineering and Technology. The journal publishes majorly in the area(s): Computer science & Augmented reality. It has an ISSN identifier of 2053-3713. It is also open access. Over the lifetime, 321 publications have been published receiving 4738 citations. The journal is also known as: HTL.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that continuous estimates of heart rate, respiratory rate and oxygen saturation can be computed with an accuracy which is clinically useful, and the authors have shown that clinically important events such as a bradycardia accompanied by a major desaturation can be identified with their algorithms for processing the video signal.
Abstract: Current technologies to allow continuous monitoring of vital signs in pre-term infants in the hospital require adhesive electrodes or sensors to be in direct contact with the patient. These can cause stress, pain, and also damage the fragile skin of the infants. It has been established previously that the colour and volume changes in superficial blood vessels during the cardiac cycle can be measured using a digital video camera and ambient light, making it possible to obtain estimates of heart rate or breathing rate. Most of the papers in the literature on non-contact vital sign monitoring report results on adult healthy human volunteers in controlled environments for short periods of time. The authors' current clinical study involves the continuous monitoring of pre-term infants, for at least four consecutive days each, in the high-dependency care area of the Neonatal Intensive Care Unit (NICU) at the John Radcliffe Hospital in Oxford. The authors have further developed their video-based, non-contact monitoring methods to obtain continuous estimates of heart rate, respiratory rate and oxygen saturation for infants nursed in incubators. In this Letter, it is shown that continuous estimates of these three parameters can be computed with an accuracy which is clinically useful. During stable sections with minimal infant motion, the mean absolute error between the camera-derived estimates of heart rate and the reference value derived from the ECG is similar to the mean absolute error between the ECG-derived value and the heart rate value from a pulse oximeter. Continuous non-contact vital sign monitoring in the NICU using ambient light is feasible, and the authors have shown that clinically important events such as a bradycardia accompanied by a major desaturation can be identified with their algorithms for processing the video signal.

157 citations

Journal ArticleDOI
TL;DR: Simulation results show that the VMD- DWT approach outperforms the conventional EMD-DWT approach, and a non-local means approach used as a reference technique provides better results than the V MD-D WT approach.
Abstract: Hybrid denoising models based on combining empirical mode decomposition (EMD) and discrete wavelet transform (DWT) were found to be effective in removing additive Gaussian noise from electrocardiogram (ECG) signals. Recently, variational mode decomposition (VMD) has been proposed as a multiresolution technique that overcomes some of the limits of the EMD. Two ECG denoising approaches are compared. The first is based on denoising in the EMD domain by DWT thresholding, whereas the second is based on noise reduction in the VMD domain by DWT thresholding. Using signal-to-noise ratio and mean of squared errors as performance measures, simulation results show that the VMD-DWT approach outperforms the conventional EMD-DWT. In addition, a non-local means approach used as a reference technique provides better results than the VMD-DWT approach.

124 citations

Journal ArticleDOI
TL;DR: The authors present a machine learning approach for automatic identification and counting of three types of blood cells using ‘you only look once’ (YOLO) object detection and classification algorithm and found that the learned models are generalised.
Abstract: A complete blood cell count is an important test in medical diagnosis to evaluate overall health condition. Traditionally blood cells are counted manually using haemocytometer along with other laboratory equipment's and chemical compounds, which is a time-consuming and tedious task. In this work, the authors present a machine learning approach for automatic identification and counting of three types of blood cells using ‘you only look once’ (YOLO) object detection and classification algorithm. YOLO framework has been trained with a modified configuration BCCD Dataset of blood smear images to automatically identify and count red blood cells, white blood cells, and platelets. Moreover, this study with other convolutional neural network architectures considering architecture complexity, reported accuracy, and running time with this framework and compare the accuracy of the models for blood cells detection. They also tested the trained model on smear images from a different dataset and found that the learned models are generalised. Overall the computer-aided system of detection and counting enables us to count blood cells from smear images in less than a second, which is useful for practical applications.

95 citations

Journal ArticleDOI
TL;DR: This work investigates the augmentation of HoloLens with the proprietary image processing SDK Vuforia, allowing integration of data from its front-facing RGB camera to provide more spatially stable holograms for neuronavigational use.
Abstract: Major hurdles for Microsoft's HoloLens as a tool in medicine have been accessing tracking data, as well as a relatively high-localisation error of the displayed information; cumulatively resulting in its limited use and minimal quantification. The following work investigates the augmentation of HoloLens with the proprietary image processing SDK Vuforia, allowing integration of data from its front-facing RGB camera to provide more spatially stable holograms for neuronavigational use. Continuous camera tracking was able to maintain hologram registration with a mean perceived drift of 1.41 mm, as well as a mean sub 2-mm surface point localisation accuracy of 53%, all while allowing the researcher to walk about a test area. This represents a 68% improvement for the later and a 34% improvement for the former compared with a typical HoloLens deployment used as a control. Both represent a significant improvement on hologram stability given the current state-of-the-art, and to the best of the authors knowledge are the first example of quantified measurements when augmenting hologram stability using data from the RGB sensor.

93 citations

Journal ArticleDOI
TL;DR: Recommendations on how to assess ultra-short HRV features reliably are provided and an inclusive algorithm is proposed that summarises the state-of-the-art knowledge in this area.
Abstract: Ultra-short heart rate variability (HRV) analysis refers to the study of HRV features in excerpts of length <5 min. Ultra-short HRV is widely growing in many healthcare applications for monitoring individual's health and well-being status, especially in combination with wearable sensors, mobile phones, and smart-watches. Long-term (nominally 24 h) and short-term (nominally 5 min) HRV features have been widely investigated, physiologically justified and clear guidelines for analysing HRV in 5 min or 24 h are available. Conversely, the reliability of ultra-short HRV features remains unclear and many investigations have adopted ultra-short HRV analysis without questioning its validity. This is partially due to the lack of accepted algorithms guiding investigators to systematically assess ultra-short HRV reliability. This Letter critically reviewed the existing literature, aiming to identify the most suitable algorithms, and harmonise them to suggest a standard protocol that scholars may use as a reference in future studies. The results of the literature review were surprising, because, among the 29 reviewed papers, only one paper used a rigorous method, whereas the others employed methods that were partially or completely unreliable due to the incorrect use of statistical tests. This Letter provides recommendations on how to assess ultra-short HRV features reliably and proposes an inclusive algorithm that summarises the state-of-the-art knowledge in this area.

74 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20238
202213
202118
202029
201951
201845