scispace - formally typeset
Search or ask a question
JournalISSN: 2220-9964

ISPRS international journal of geo-information 

Multidisciplinary Digital Publishing Institute
About: ISPRS international journal of geo-information is an academic journal published by Multidisciplinary Digital Publishing Institute. The journal publishes majorly in the area(s): Computer science & Geospatial analysis. It has an ISSN identifier of 2220-9964. It is also open access. Over the lifetime, 3900 publications have been published receiving 57537 citations. The journal is also known as: IJGI & International journal of geo-information.


Papers
More filters
Journal ArticleDOI
TL;DR: This study demonstrates that 3D city models are employed in at least 29 use cases that are a part of more than 100 applications that could be useful for scientists as well as stakeholders in the geospatial industry.
Abstract: In the last decades, 3D city models appear to have been predominantly used for visualisation; however, today they are being increasingly employed in a number of domains and for a large range of tasks beyond visualisation. In this paper, we seek to understand and document the state of the art regarding the utilisation of 3D city models across multiple domains based on a comprehensive literature study including hundreds of research papers, technical reports and online resources. A challenge in a study such as ours is that the ways in which 3D city models are used cannot be readily listed due to fuzziness, terminological ambiguity, unclear added-value of 3D geoinformation in some instances, and absence of technical information. To address this challenge, we delineate a hierarchical terminology (spatial operations, use cases, applications), and develop a theoretical reasoning to segment and categorise the diverse uses of 3D city models. Following this framework, we provide a list of identified use cases of 3D city models (with a description of each), and their applications. Our study demonstrates that 3D city models are employed in at least 29 use cases that are a part of more than 100 applications. The classified inventory could be useful for scientists as well as stakeholders in the geospatial industry, such as companies and national mapping agencies, as it may serve as a reference document to better position their operations, design product portfolios, and to better understand the market.

547 citations

Journal ArticleDOI
TL;DR: The WUDAPT protocol developed here provides an easy to understand workflow; uses freely available data and software; and can be applied by someone without specialist knowledge in spatial analysis or urban climate science.
Abstract: Progress in urban climate science is severely restricted by the lack of useful information that describes aspects of the form and function of cities at a detailed spatial resolution. To overcome this shortcoming we are initiating an international effort to develop the World Urban Database and Access Portal Tools (WUDAPT) to gather and disseminate this information in a consistent manner for urban areas worldwide. The first step in developing WUDAPT is a description of cities based on the Local Climate Zone (LCZ) scheme, which classifies natural and urban landscapes into categories based on climate-relevant surface properties. This methodology provides a culturally-neutral framework for collecting information about the internal physical structure of cities. Moreover, studies have shown that remote sensing data can be used for supervised LCZ mapping. Mapping of LCZs is complicated because similar LCZs in different regions have dissimilar spectral properties due to differences in vegetation, building materials and other variations in cultural and physical environmental factors. The WUDAPT protocol developed here provides an easy to understand workflow; uses freely available data and software; and can be applied by someone without specialist knowledge in spatial analysis or urban climate science. The paper also provides an example use of the WUDAPT project results.

439 citations

Journal ArticleDOI
TL;DR: A standard for an improved EASE-Grid 2.0 definition is defined, addressing how the changes rectify issues with the original grid definition and will minimize common reprojection errors that users had encountered with the originally defined grid definition.
Abstract: Defined in the early 1990s for use with gridded satellite passive microwave data, the Equal-Area Scalable Earth Grid (EASE-Grid) was quickly adopted and used for distribution of a variety of satellite and in situ data sets. Conceptually easy to understand, EASE-Grid suffers from limitations that make it impossible to format in the widely popular GeoTIFF convention without reprojection. Importing EASE-Grid data into standard mapping software packages is nontrivial and error-prone. This article defines a standard for an improved EASE-Grid 2.0 definition, addressing how the changes rectify issues with the original grid definition. Data distributed using the EASE-Grid 2.0 standard will be easier for users to import into standard software packages and will minimize common reprojection errors that users had encountered with the original EASE-Grid definition.

349 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce mgwr, a Python-based implementation of MGWR that explicitly focuses on the multiscale analysis of spatial heterogeneity, and provide novel functionality for inference and exploratory analysis of local spatial processes, new diagnostics unique to multi-scale local models, and drastic improvements in estimation routines.
Abstract: Geographically weighted regression (GWR) is a spatial statistical technique that recognizes that traditional ‘global’ regression models may be limited when spatial processes vary with spatial context. GWR captures process spatial heterogeneity by allowing effects to vary over space. To do this, GWR calibrates an ensemble of local linear models at any number of locations using ‘borrowed’ nearby data. This provides a surface of location-specific parameter estimates for each relationship in the model that is allowed to vary spatially, as well as a single bandwidth parameter that provides intuition about the geographic scale of the processes. A recent extension to this framework allows each relationship to vary according to a distinct spatial scale parameter, and is therefore known as multiscale (M)GWR. This paper introduces mgwr, a Python-based implementation of MGWR that explicitly focuses on the multiscale analysis of spatial heterogeneity. It provides novel functionality for inference and exploratory analysis of local spatial processes, new diagnostics unique to multi-scale local models, and drastic improvements to efficiency in estimation routines. We provide two case studies using mgwr, in addition to reviewing core concepts of local models. We present this in a literate programming style, providing an overview of the primary software functionality and demonstrations of suggested usage alongside the discussion of primary concepts and demonstration of the improvements made in mgwr.

308 citations

Journal ArticleDOI
TL;DR: A snapshot of the role of citizens in crowdsourcing geographic information is provided and a guide to the current status of this rapidly emerging and evolving subject is provided.
Abstract: Citizens are increasingly becoming an important source of geographic information, sometimes entering domains that had until recently been the exclusive realm of authoritative agencies. This activity has a very diverse character as it can, amongst other things, be active or passive, involve spatial or aspatial data and the data provided can be variable in terms of key attributes such as format, description and quality. Unsurprisingly, therefore, there are a variety of terms used to describe data arising from citizens. In this article, the expressions used to describe citizen sensing of geographic information are reviewed and their use over time explored, prior to categorizing them and highlighting key issues in the current state of the subject. The latter involved a review of ~100 Internet sites with particular focus on their thematic topic, the nature of the data and issues such as incentives for contributors. This review suggests that most sites involve active rather than passive contribution, with citizens typically motivated by the desire to aid a worthy cause, often receiving little training. As such, this article provides a snapshot of the role of citizens in crowdsourcing geographic information and a guide to the current status of this rapidly emerging and evolving subject.

304 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023151
2022202
2021771
2020759
2019589
2018498