scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Food Science in 2022"


Journal ArticleDOI
TL;DR: The toxic effects associated with the consumption of kombucha are still unclear, but due to the possibility of adverse reactions occurring, its consumption is contraindicated in infants and pregnant women, children under 4-years-old, patients with kidney failure, and patients with HIV.
Abstract: Kombucha has been gaining prominence around the world and becoming popular due to its good health benefits. This beverage is historically obtained by the tea fermentation of Camellia sinensis and by a biofilm of cellulose containing the symbiotic culture of bacteria and yeast (SCOBY). The other substrates added to the C. sinensis tea have also been reported to help kombucha production. The type as well as the amount of sugar substrate, which is the origin of SCOBY, in addition to time and temperature of fermentation influence the content of organic acids, vitamins, total phenolics, and alcoholic content of kombucha. The route involved in the metabolite biotransformation identified in kombucha so far and the microorganisms involved in the process need to be further studied. Some nutritional properties and benefits related to the beverage have already been reported. Antioxidant and antimicrobial activities and antidiabetic and anticarcinogenic effects are some of the beneficial effects attributed to kombucha. Nevertheless, scientific literature needs clinical studies to evaluate these benefits in human beings. The toxic effects associated with the consumption of kombucha are still unclear, but due to the possibility of adverse reactions occurring, its consumption is contraindicated in infants and pregnant women, children under 4-years-old, patients with kidney failure, and patients with HIV. The regulations in place for kombucha address a number of criteria, mainly for the pH and alcohol content, in order to guarantee the quality and safety of the beverage as well as to ensure transparency of information for consumers.

29 citations


Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper reviewed recent developments in the investigation of the diversity, stability, and metabolism of the Jiang-flavor baijiu microbial community and proposed the importance of protecting the ecology of the production environment.
Abstract: Chinese baijiu is one of the six major distilled spirits worldwide and is widely enjoyed because of its unique flavor. Among typical baijiu, Jiang-flavor baijiu is gaining popularity. However, the fermentation mechanisms of baijiu remain unclear due to its open inoculation environment and complex brewing process. In recent years, advances in high-throughput sequencing and multi-omics technologies have yielded meaningful information regarding fermentation microbiome. Therefore, this paper reviews recent developments in the investigation of the diversity, stability, and metabolism of the Jiang-flavor baijiu microbial community. Furthermore, the importance of protecting the ecology of the production environment is proposed based on the putative contribution of environmental factors to the fermentation microbiome and baijiu characteristics. Finally, this paper discusses current research challenges that need to be addressed, including the limitations of sequencing technologies and difficulties unveiling the mechanisms of microbial interaction between the fermentation microbiome and the environmental ecology. The findings of this review will promote further understanding of the Jiang-flavor baijiu fermentation process and provide valuable information for the research and development of traditional baijiu and other naturally fermented foods. PRACTICAL APPLICATION: Baijiu, a transparent strong alcoholic drink, is the world's largest consumed and the most valuable spirit in the market. However, the fermentation mechanisms of baijiu remain unclear due to its open inoculation environment and complex brewing process. Therefore, if we can summarizes the current advances and research challenges of microbial fermentation in baijiu, it will deepen the reader's understanding of the complex fermentation process and fermentation mechanism in baijiu. Furthermore, based on the putative contribution of environmental factors to the fermentation process, the importance of protecting the ecology of the production environment is proposed in future research trends, which will provide valuable information for the research and development of other traditional naturally fermented foods. This will not only achieve breakthroughs in academic value, but also bring higher practical value to fermented foods.

23 citations


Journal ArticleDOI
TL;DR: In this article , a review of the impact of tea processing on phytochemical profile and contents in differently processed tea is presented, focusing on white, green, oolong, black, and pu-erh tea.
Abstract: Fresh tea leaves (Camellia sinensis (L.) O. Kuntze) are processed by various techniques to produce different types of tea. The most common way to classify tea types is based on the similarities in processing methods resulting in the five commonly recognized tea types: white, green, oolong, black, and pu-erh teas. The differences in the degree and nature of fermentation of tea leaves lead to different chemical changes depending on the processing method. Understanding the phytochemical profile of differently processed tea is important, as tea types classified by processing methods are currently not well defined because the chemical parameters for these tea types are still not established. Therefore, any significant characteristics found for a tea type due to processing may be helpful in defining tea types. However, the evidence on the impact of tea processing on phytochemical profile and contents in differently processed tea is currently unclear. Therefore, this review aims to examine (1) the processing techniques of white, green, oolong, black, and pu-erh tea, (2) the impact of tea processing on tea phytochemicals, and (3) the key characteristics associated with the phytochemical profiles of differently processed tea. PRACTICAL APPLICATION: Tea (Camellia sinensis (L.) O. Kuntz) is the most widely consumed beverage in the world. Tea consumption has been demonstrated through in-vitro experiments and in animal and human intervention studies to exhibit potential in preventing various oxidative stress-related chronic diseases, such as cardiovascular diseases, Alzheimer.s disease, diabetes and certain cancers. Based on the processing methods, tea is commonly categorized into white, green, oolong, black and pu-er tea. However, there are large overlap in processing methods between some teas and, more importantly, the chemical compositions of differently processed teas are highly variable. This review aims to examine (1) how white, green, oolong, black and Pu-erh tea are processed, (2) what are the effects of tea processing on tea phytochemicals and (3) to identify whether there are key characteristics associated to the phytochemical profiles of differently processed teas. The review will contribute to tea research in collating in one article the state of knowledge on the chemical changes and composition of the differently processed teas, and point to future direction in this area of research.

21 citations


Journal ArticleDOI
TL;DR: In this paper , the antioxidant properties of Sargassum polycystum were investigated by different extraction solvents and hydrolysis methods, and the results indicated that S. polycinnamic acids, seven flavonoids, one stilbene, and two phlorotannins are potentially useful antioxidant source and contribute to the development of seaweed-based functional foods.
Abstract: Abstract Total phenolic content (TPC), phenolic profiles, and antioxidant activity of free and bound extracts of Sargassum polycystum, obtained by different extraction solvents and hydrolysis methods, were investigated. Aqueous acetone afforded the highest free TPC and antioxidant ability, followed by aqueous ethanol and aqueous methanol. Twelve free phenolic compounds were identified by ultra‐high‐performance liquid chromatography‐mass spectrometry (UHPLC‐MS), including two hydroxycinnamic acids, seven flavonoids, one stilbene, and two phlorotannins. Three to nine different free phenolic compounds were extracted by these solvents with different compositions, including nine by 70% acetone and eight by 70% methanol, 70% ethanol, and 50% ethanol. The highest total content of free phenolic compounds determined by high‐performance liquid chromatography‐diode array detection was obtained from 70% ethanol. Alkaline hydrolysis afforded higher bound TPC (274.27 mg GAE/100 g DW) and antioxidant ability than acid hydrolysis. Five bound phenolic compounds were characterized by UHPLC‐MS and five were released from alkaline hydrolysis, whereas two were released from acid hydrolysis. Total content of bound phenolic compounds released by alkaline hydrolysis was 14.68‐fold higher than that by acid hydrolysis. The free and bound TPC, phenolic profiles, and antioxidant activities depended on the extraction solvent used. These results indicate that S. polycystum is a potentially useful antioxidant source and contribute to the development of seaweed‐based functional foods. Practical Application Phenolics are usually divided into free and bound forms based on their extractability and interaction with cell wall components. The nutritional effects of bound phenolics in algae have long been neglected. These topics contribute to the development of seaweed‐based functional foods.

14 citations


Journal ArticleDOI
TL;DR: In this paper , an up-to-date overview of the significant bioactive compounds in apples together with their reported pharmacological actions against chronic diseases such as diabetes, cancer, and cardiovascular diseases is provided.
Abstract: Abstract Apples are rich sources of selected micronutrients (e.g., iron, zinc, vitamins C and E) and polyphenols (e.g., procyanidins, phloridzin, 5′‐caffeoylquinic acid) that can help in mitigating micronutrient deficiencies (MNDs) and chronic diseases. This review provides an up‐to‐date overview of the significant bioactive compounds in apples together with their reported pharmacological actions against chronic diseases such as diabetes, cancer, and cardiovascular diseases. For consumers to fully gain these health benefits, it is important to ensure an all‐year‐round supply of highly nutritious and good‐quality apples. Therefore, after harvest, the physicochemical and nutritional quality attributes of apples are maintained by applying various postharvest treatments and hurdle techniques. The impact of these postharvest practices on the safety of apples during storage is also highlighted. This review emphasizes that advancements in postharvest management strategies that extend the storage life of apples should be optimized to better preserve the bioactive components crucial to daily dietary needs and this can help improve the overall health of consumers.

13 citations


Journal ArticleDOI
TL;DR: The principal umami ingredient monosodium l‐glutamate, broadly known as MSG, losesUmami taste upon acetylation, esterification, or methylation, but is able to form flat configurations that bind well to the umami taste receptor.
Abstract: Abstract Understanding taste is key for optimizing the palatability of seaweeds and other non‐animal‐based foods rich in protein. The lingual papillae in the mouth hold taste buds with taste receptors for the five gustatory taste qualities. Each taste bud contains three distinct cell types, of which Type II cells carry various G protein‐coupled receptors that can detect sweet, bitter, or umami tastants, while type III cells detect sour, and likely salty stimuli. Upon ligand binding, receptor‐linked intracellular heterotrimeric G proteins initiate a cascade of downstream events which activate the afferent nerve fibers for taste perception in the brain. The taste of amino acids depends on the hydrophobicity, size, charge, isoelectric point, chirality of the alpha carbon, and the functional groups on their side chains. The principal umami ingredient monosodium l‐glutamate, broadly known as MSG, loses umami taste upon acetylation, esterification, or methylation, but is able to form flat configurations that bind well to the umami taste receptor. Ribonucleotides such as guanosine monophosphate and inosine monophosphate strongly enhance umami taste when l‐glutamate is present. Ribonucleotides bind to the outer section of the venus flytrap domain of the receptor dimer and stabilize the closed conformation. Concentrations of glutamate, aspartate, arginate, and other compounds in food products may enhance saltiness and overall flavor. Umami ingredients may help to reduce the consumption of salts and fats in the general population and increase food consumption in the elderly.

10 citations


Journal ArticleDOI
TL;DR: In this article , the authors provide the information about the desirable coating property requirements specific to tomato and summarizes or analyzes the recent studies conducted on the application of edible coating on tomato and deal with recent trends on utilization of bioactive compounds as well as nanotechnological approaches for improving the performance and functionality of coating materials used for tomato.
Abstract: Tomato is considered as one of the most grown horticultural crops having a short shelf-life due to its climacteric nature of ripening, susceptibility to postharvest microbial decay, and mechanical damage, resulting in huge postharvest losses. Recently, the use of edible coatings has been seen as a promising environment friendly and sustainable technology for preserving the quality attributes and prolonging the shelf-life of tomato during storage. Although a lot of literature is available on the aspects of edible coating for fresh produce, especially stone and tropical fruits, but there is no dedicated comprehensive review that specifically addresses the requirements of edible coatings for whole fresh tomato. This review aims to provide the information about the desirable coating property requirements specific to tomato and summarizes or analyzes the recent studies conducted on the application of edible coating on tomato. The article also deals with recent trends on utilization of bioactive compounds as well as nanotechnological approaches for improving the performance and functionality of coating materials used for tomato. However, the edible coating technology for tomato is still at infancy state, and adoption of technology on a commercial scale requires economic viability and large-scale consumer acceptability.

10 citations


Journal ArticleDOI
TL;DR: In this paper , all the reports regarding the occurrence of isoflavones in soybean sprouts have been covered for the first time, and a review of the current state of the research by comparing the general trends and the different treatments for soybean Sprouts is presented.
Abstract: Sprouting is a common strategy to enhance the nutritional value of seeds. Here, all the reports regarding the occurrence of isoflavones in soybean sprouts have been covered for the first time. Isoflavones were detected with concentrations ranging from 1 × 10-2 to 1 × 101 g/kg in soybean sprouts. Isoflavone concentration depends on the cultivar, germination time, part of the sprout, light, and temperature. Aglycon isoflavones increased during germination, especially in the hypocotyl, while 6″-O-malonyl-7-O-β-glucoside isoflavones decreased in the hypocotyl and increased in the cotyledon and root. Cooking reduced total isoflavone content. Regarding the strategies to enhance isoflavone contents, fermentation with Aspergillus sojae and external irradiation with UV-A or far-infrared were the methods that caused the greatest increases in aglycon, 7-O-β-glucoside, and total isoflavones. However, the largest increases in 6″-O-malonyl-7-O-β-glucoside and 6″-O-acetyl-7-O-β-glucosides isoflavones were detected after treatment with chitohexaose and calcium chloride, respectively. PRACTICAL APPLICATION: Soybean sprouts are widely consumed and provide essential proteins, antioxidants, and minerals. They are rich in isoflavones, which exhibit numerous health benefits, and have been studied as alternative therapies for a range of hormone-dependent conditions, such as cancer, menopausal symptoms, cardiovascular disease, and osteoporosis. Despite numerous reports being published to date regarding the occurrence of isoflavones in soybean sprouts, the publications in this field are highly dispersed, and a review has not yet been published. This review aims to (1) highlight the particular isoflavones that have been detected in soybean sprouts and their concentrations, (2) compared the effects of temperature, light, cooking and soybean cultivar affect the isoflavone levels on the different parts of the sprout, and (3) discuss the efficacy of the methods to enhance isoflavone contents. This review will provide a better understanding of the current state of this field of research by comparing the general trends and the different treatments for soybean sprouts.

10 citations


Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the specific volume, texture, and aroma substances of bread with mixed fermentation and found that the mixture of S. cerevisiae and Lactiplantibacillus plantarum-assisted yeast fermentation significantly improved the quality of bread.
Abstract: Fermentation strains play a key role in the quality of bread. The combination of yeast and lactic acid bacteria (LAB) may effectively improve the function and nutritional properties of bread. In this study, the dough was fermented to make bread by using single strain (Saccharomyces cerevisiae, mode A), the combination of two strains (S. cerevisiae and Lactiplantibacillus plantarum, mode B; S. cerevisiae and Lactobacillus delbrueckii, mode C), or three strains (S. cerevisiae, L. plantarum, and L. delbrueckii, mode D). The specific volume, texture, and aroma substances of bread were evaluated. The possibility of mixed fermentation of selected yeast and LAB to replace natural fermentation dough was evaluated. The results showed that the specific volume of bread in mode B was 15.2% higher than that of mode A. The structure was softer and the taste was more vigorous in mode B bread. The content of volatile compounds was highest in mode B bread among the four mode bread. The characteristic flavors were ethyl 2-hydroxypropionate and z-3-hexenol. The cofermentation in mode B made the bread aroma richer and gave better aroma characteristics to bread. Therefore, the fermentation of S. cerevisiae and L. plantarum can be recommended to replace naturally fermented dough to improve the quality of bread. PRACTICAL APPLICATION: L. plantarum and L. delbrueckii, separately or together, assisted in yeast fermentation to make bread. The specific volume, texture, and aroma substances of bread were evaluated to replace natural fermented dough with mixed fermentation. L. plantarum-assisted yeast fermentation improved the specific volume, texture, and aroma of bread. The characteristic flavors were ethyl 2-hydroxypropionate and z-3-hexenol in bread. Therefore, the fermentation of S. cerevisiae and L. plantarum could replace naturally fermented dough to improve the quality of bread.

9 citations


Journal ArticleDOI
TL;DR: In this paper , the fatty acid profile and sterol content of three non-conventional oils used in functional food products (hempseed oil, moringa oil, and echium oil) were explored and characterized.
Abstract: Abstract New sources of bioactive compounds are constantly explored for reformulating healthier foods. This work aimed to explore and characterize the fatty acid profile and sterol content of three non‐conventional oils used in functional food products (hempseed oil, moringa oil, and echium oil) and to compare them with two conventional ones (extra virgin olive oil [EVOO] and linseed oil). Oxidative stability was assessed by determining their acidity value and peroxide content. All oils showed adequate values for acidity and oxidation status. Echium and hempseed oils showed a high content of polyunsaturated fatty acids (>70%), especially omega‐3 fatty acids, while moringa oil was rich in oleic acid. Echium oil, hempseed oil, and moringa oil presented higher sterol content than EVOO, but lower than that of linseed oil. Sitosterol was the most abundant sterol in all samples (97.88–275.36 mg/100 g oil), except in echium oil, where campesterol (170.62 mg/100 g oil) was the major sterol. Squalene was only found in significant amounts in EVOO. In conclusion, non‐conventional oils seem to be interesting sources of bioactive compounds and have great potential for the food industry. Practical Application Non‐conventional vegetable oils can be used as alternative sources of lipids in a variety of food products. Additionally, these oils have great potential to be included in the formulation of functional ingredients for the delivery of omega‐3 fatty acids, antioxidants, fiber, among others.

9 citations


Journal ArticleDOI
TL;DR: In this paper , the authors proposed the use of near-infrared techniques for the detection of food fraud in dairy products as they are faster, nondestructive, environmentally friendly, do not require sample preparation, and allow multiconstituent analysis.
Abstract: The dairy products sector is an important part of the food industry, and their consumption is expected to grow in the next 10 years. Therefore, the authentication of these products in a faster and precise way is required for the sake of public health. This review proposes the use of near-infrared techniques for the detection of food fraud in dairy products as they are faster, nondestructive, environmentally friendly, do not require sample preparation, and allow multiconstituent analysis. First, we have described frequent forms of food fraud in dairy products and the application of traditional techniques for their detection, highlighting gaps and counterproductive characteristics for the actual global food chain, as longer sample preparation time and use of reagents. Then, the application of near-infrared spectroscopy and hyperspectral imaging for the detection of food fraud mainly in cheese, butter, and yogurt are described. As these techniques depend on model development, the coverage of different dairy products by the literature will promote the identification of food fraud in a faster and reliable way.

Journal ArticleDOI
TL;DR: Characterizing the key aroma-active composition of sunflower oil and investigating its relationship with oil processing could provide important practical applications for the sunflowerOil industry in flavor regulation, quality control, product development, and process optimization.
Abstract: This study investigated the changes in aroma composition and perception of sunflower oils induced by seed roasting using sensory-oriented flavor analysis. Volatile compounds were extracted by solvent-assisted flavor evaporation and headspace solid-phase microextraction. Odorants were characterized by gas chromatography-olfactometry-mass spectrometry and aroma extract dilution analysis. The cold-pressed and roasted sunflower oils contained 13 and 50 odorants, respectively, with the flavor dilution factors between 1 and 256. Fifty-six odorants were newly identified in sunflower oils. Quantification of 26 important odorants by the external standard method revealed apparent changes induced by seed roasting in loss of terpenes, formation of Maillard reaction products, and the increase in lipid oxidation products. The most important odorants (odor active values, OAVs = 1-1857) in the cold-pressed sunflower oil included α-pinene (11,145 µg/kg), β-pinene (4068 µg/kg), linalool (56 µg/kg), hexanal (541 µg/kg), octanal (125 µg/kg), α-phellandrene (36 µg/kg), and (E)-2-octenal (69 µg/kg), contributing to the raw sunflower seed, woody, green, earthy, and sweet aromas of the oil. The most important contributors (OAVs = 1-884) to the roasted, smoky, and burnt aromas of the roasted sunflower oil were 2- and 3-methylbutanal (6726 and 714 µg/kg), 2,6-dimethylpyrazine (2329 µg/kg), 2,5-dimethylpyrazine (12,228 µg/kg), 2,3-dimethylpyrazine (238 µg/kg), 2,3-pentanedione (1456 µg/kg), 2-pentylfuran (1332 µg/kg), 2,3-dimethyl-5-ethylpyrazine (213 µg/kg), and 1-pentanol (693 µg/kg). Aroma recombination of the key odorants in odorless sunflower oil adequately mimicked the general aroma profiles of sunflower oils. This study provides an important foundation for understanding the relationship between oil processing and aroma molecules of sunflower oils. PRACTICAL APPLICATION: The clear changes observed in the composition and concentrations of key aroma compounds explained the changes in sensory characteristics of sunflower seed oils induced by seed roasting on a molecular basis. Characterizing the key aroma-active composition of sunflower oil and investigating its relationship with oil processing could provide important practical applications for the sunflower oil industry in flavor regulation, quality control, product development, and process optimization.

Journal ArticleDOI
Ya Han, Chen Wang, Xiao-Long Zhang, Xiao Li, Ya Gao 
TL;DR: In this article , the characteristic volatiles across the fermentation process of Dongbei Suancai (DS) were investigated by headspace-gas-chromatography-ion-mobility-spectrometry (HS-GC-IMS) combined with principal component analysis (PCA).
Abstract: Volatile flavor compounds determine the holistic, unique, sensory characteristic of fermented food. The characteristic volatiles across the fermentation process of Dongbei Suancai (DS) were investigated by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) combined with principal component analysis (PCA). A total of 19 representative flavor substances were identified in the samples. The differences of volatiles in naturally and inoculated-fermented DS from different fermentation stages were detected. Ethyl acetate, ethyl butanoate, ethyl 3-methyl butanoate, acetone, butanone, 2, 3-butanedione, and dimethyl disulfide are important volatile substances in DS, which were all found to be formed in the prophase of fermentation. As fermentation proceeds, inoculated DS showed an improved flavor with ester aromatic substances becoming enriched, including propyl bytanoate and ethyl hexanoate. Furthermore, inoculated fermentation leads to a typical component, namely 3-methylbutanol, being generated after the addition of Lactobacillus Plantarum LND 399 as a starter. The PCA was subsequently conducted based on the signal intensity of the identified volatile substances and showed that DS samples were distinguished favorably in mutually independent comparative spaces. This study revealed that the combination of HS-GC-IMS and PCA is an effective tool for analysis of the characteristic volatiles in DS samples. PRACTICAL APPLICATION: This study has shown that the combination of HS-GC-IMS and PCA is an effective tool for analysis of the characteristic volatiles in DS samples. This will provide a useful method for the identification and classification of DS flavor.

Journal ArticleDOI
TL;DR: The results suggest that polyphenols are the main deodorizing components, and RA, CA, and CS are themain deodorizer active compounds in rosemary extract.
Abstract: Fishy odor in fish products severely influences both eating quality and commercial acceptability, and natural plant extracts, particularly spices, have recently become popular for the removal of fishy odor. This study aimed to explore the potential of rosemary extract for the deodorization of silver carp (Hypophthalmichthys molitrix), as well as to identify the deodorizing components in rosemary extract. Results showed that all of the spice extracts used in this study (ginger, garlic, angelica dahurica, fennel, rosemary, nutmeg, white cardamom, cinnamon, star anise, and bay leaf) significantly reduced the fishy odor value of silver carp, among which rosemary extract was most effective, decreasing the fishy odor value by about 58%. Gas chromatography-mass spectrometry analysis and sensory evaluation showed that the fishy odor value and concentrations of the fishy odor-active compounds were significantly reduced by the application of rosemary extract. However, the lower the total phenolic content of rosemary extract, the poorer the deodorizing effects against silver carp, suggesting that the deodorizing effect was primarily driven by polyphenols. Fourteen phenolic compounds were measured in rosemary extract, and three individual phenolic compounds (rosmarinic acid [RA], carnosic acid [CA], and carnosol [CS]) were chosen for deodorizing experiment. Sensory detection results and changes of contents of volatile showed that these three phenolic compounds are effective at removing the fishy odor. These results suggest that polyphenols are the main deodorizing components, and RA, CA, and CS are the main deodorizing active compounds in rosemary extract. PRACTICAL APPLICATION: The results of this study may provide a new way to determine the deodorizing components of spice extracts. Moreover, it can provide guidance for further research in investigating the deodorizing mechanism of sipce extracts.

Journal ArticleDOI
TL;DR: In this article, the physicochemical properties and in vitro digestibility of four colored quinoa varieties, including white quinoa (QS-W), yellow quinoa, red quinoa and black, were compared with respect to their physicochemical characteristics.
Abstract: The quinoa flour processing is mostly subject to the properties of starch. Starches from four colored quinoa varieties, including white quinoa (QS-W), yellow quinoa (QS-Y), red (QS-R), and black (QS-B), were compared with respect to their physicochemical properties and in vitro digestibility. Results indicated that QS-B exhibited the highest content of amylose (8.14%) (p < 0.05). All starch samples exhibited as irregular sphere with a particle size less than 3 µm. Results of the FT-IR and X-ray showed that the short-range order of the four quinoa starches exhibited no significant difference; all starches showed a typical A-type diffractrometric pattern and was not affected by seed color, and QS-Y had the highest relative crystallinity (34.3%) (p < 0.05). In addition, QS-W reflected the highest solubility (6.32%) and QS-Y showed the highest swelling power (19.45 g/g) (p < 0.05). QS-Y also presented a higher ΔH value (11.46 J/g) (p < 0.05), while QS-R peak temperature and peak G' were the lowest. Besides, QS-B had the highest slow-digestible starch (SDS) and resistant starch (RS) content, while the lowest estimated glycemic index (eGI) value (p < 0.05). Also, there was a negative correlation between hydrolysis rates and amylose content of quinoa starch. PRACTICAL APPLICATION: Due to the low gelatinization temperature of quinoa starch, it can be used to both produce and improve instant and fast food products. Quinoa starch particles are small, and Pickering emulsions and additives have potential application values. Red quinoa contains easily digestible starch, which can be a good food choice for infants and the elderly, while white quinoa starch has less swelling power and can be used in noodle products. The results of this study can help to underpin the study of quinoa nonstarch components versus starch component.

Journal ArticleDOI
TL;DR: In this article , the effects of PAE on the redox state of obese mice were explored, and it was shown that PAE treatment decreased the elevations of the body weight by 24.7%, serum total cholesterol by 48.3%, serum triglyceride by 42.4%, and elevated serum activities of glutathione peroxidase by 53.3%.
Abstract: This study explored the advantageous effects of purple sweet potato anthocyanin extract (PSPAE) on redox state in obese mice. The normal chow diet (NCD) group, high-fat/cholesterol diet (HCD) group, and three groups based on HCD and added with low, middle, and high dose of PSPAE (PAL, PAM, and PAH) were raised for 12 weeks. High dose of PSPAE treatment decreased the elevations of the body weight by 24.7%, serum total cholesterol by 48.3%, serum triglyceride by 42.4%, and elevated serum activities of glutathione peroxidase by 53.3%, superoxide dismutase by 57.8%, catalase by 75.4%, decreased serum contents of malondialdehyde by 27.1% and lipopolysaccharides by 40.5%, as well as increased caecal total short-chain fatty acid by 2.05-fold. Additionally, PSPAE depressed toll-like receptor 4 (TLR-4), nuclear factor kappa-B (NF-κB), interleukin 6, tumor necrosis factor α, and preserved nuclear factor erythroid-2-related factor 2 (Nrf2) gene expression. Similarly, the protein expression of Nrf2 was enhanced, while TLR-4 and p-NF-κB/NF-κB were depressed by PSPAE treatment. Moreover, PSPAE administration promoted the protection of intestinal barrier function and rebuilt gut microbiota homeostasis by blooming g_Akkermansia, g_Bifidobacterium, and g_Lactobacillus. Furthermore, antibiotic interference experiments showed that the gut microbiota was indispensable for preserving the redox state of PSPAE. These results suggested that PSPAE administration could be an opportunity for improving HCD-induced obesity and the redox state related to gut dysbiosis. PRACTICAL APPLICATION: Purple sweet potato anthocyanin has diverse pharmacological properties. It is applicable for individuals to consume extracts (as pills or other forms) from raw purple sweet potato if they want to improve obesity or redox state.

Journal ArticleDOI
TL;DR: In this article , a coarse cereal compound powder (CCCP) was prepared through enzymolysis, fermentation, and joint treatment with 10 coarse cereal types as raw materials, and the effects of different treatments on the microstructure of CCCP were investigated.
Abstract: Abstract In this study, a coarse cereal compound powder (CCCP) was prepared through enzymolysis, fermentation, and joint treatment with 10 coarse cereal types as raw materials. Using 10 evaluation indices, namely the scavenging capacity of 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH•), 2,2′‐azino‐bis‐(3‐ethylbenzthiazoline‐6‐sulfonic acid) (ABTS+), hydroxyl (OH•) and superoxide anion (O2 –), the Fe2+ chelating capacity, the content of anthocyanin, flavone, soluble dietary fiber, reducing sugar and protein, antioxidant activity, and functional components of CCCP prepared by different methods were compared. Principal component analysis (PCA) was performed to establish a quality evaluation model of CCCP. Then, the effects of different treatments on the microstructure of CCCP were investigated. Two principal components (PCs) were extracted from PCA, with a cumulative contribution rate of 97.014%. In addition, the analysis of thermodynamic properties indicated that the initial gelatinization temperature of CCCP decreased after enzymolysis and fermentation and that it was easier to gelatinize. Particle size analyses revealed that different treatments could reduce the sample particles to different degrees. The average particle size in the three study groups decreased. Scanning electron microscopy (SEM) revealed that after different treatments, the samples were destroyed to different extents, which facilitated easy dissolution of active substances. Fourier‐transformed‐infrared spectroscopy (FTIR) revealed that the changes of CCCP functional groups after fermentation and joint treatment were more significant than those after enzymolysis. Practical Application In this study, enzymolysis and fermentation techniques were used to improve the antioxidant activity and functional components of CCCP, and the effects of different treatments on the microstructure of CCCP were investigated. The bioavailability and nutrient composition of CCCP could be significantly improved by pretreatment, provide useful reference for the development of beneficial ingredients in cereal meal products and the application of different pretreatment methods.

Journal ArticleDOI
TL;DR: The results have shown that coriander and its monoterpenoid compound, linalool, can be considered as potential drug candidates for treating metabolic syndrome and different inflammatory conditions especially neural and CNS diseases.
Abstract: Abstract Coriandrum sativum (coriander) is an edible herb in the family Apiaceae. The leaves, fruits, and stems of C. sativum have long been used as culinary spice due to their favorable odor. Traditional practitioners used this plant for treating different diseases like blepharitis, scabies, aphthous stomatitis, laryngitis, headache, and palpitation. In modern researches, coriander has demonstrated anxiolytic, anticonvulsant, antimigraine, neuroprotective, analgesic, diuretic, hypoglycemic, hypolipidemic, hypotensive, anticancer, and antioxidant activities. Coriander contains a wide range of bioactive phytochemicals among which phenylpropenes, terpenoids, isocoumarins, phytosterols, and fatty acids are the most important. This review provides information about the botanical and ethnobotanical aspects, chemical profile, therapeutic uses in Islamic traditional medicine (ITM), and recent pharmacological studies of coriander effects. The results have shown that coriander and its monoterpenoid compound, linalool, can be considered as potential drug candidates for treating metabolic syndrome and different inflammatory conditions especially neural and CNS diseases.

Journal ArticleDOI
TL;DR: In this article , the effects of different probiotics on the texture, rheological properties, microstructure, and water distribution of yogurt fermented with soy powder, soy isolate protein, soy umbilical powder, and soy whey as the main raw materials were studied.
Abstract: The effects of different probiotics on the texture, rheological properties, microstructure, and water distribution of yogurt fermented with soy powder, soy isolate protein powder, soy umbilical powder, and soy whey as the main raw materials were studied. The soy materials-based yogurt fermented by Danisco mixed probiotic reached the end of fermentation after 4 h, which significantly shortened the fermentation time compared with other probiotic combinations. The fermentation with Danisco mixed probiotic and Kefir mixed probiotic respectively resulted in good texture and a denser and more homogeneous microstructure, which was consistent with the sensory evaluation results. Both fermentations had a high water holding capacity of 90.92% and 78.30%, respectively, in agreement with the results of moisture distribution tests. However, the elastic and viscous behaviors were weaker at certain shear frequency. This study achieved a high value-added utilization of soy whey and the development of a new soy materials-based yogurt that met the consumption needs of people with lactose intolerance and high cholesterol. PRACTICAL APPLICATION: In this study, high value-added utilization of soy whey was realized, which solved the problems of resource waste and environmental pollution. Meanwhile, the research and development of soy materials-based yogurt provided another nutritional and healthy consumption demand for lactose intolerant people.

Journal ArticleDOI
TL;DR: Compared with glutenous rice flour, normal rice flour leads to more viscous paste and gluten-free breads with larger volume, evener texture, and better resilience, and this study provides guidance for practical uses of rice flours in improving gluten- free dough and bread quality.
Abstract: This study aims to determine gluten-free bread-making potential of different types of rice, particularly comparing normal rice versus glutinous rice flours. Proximate and chemical compositions, hydration, and dough mixing and pasting properties of ten rice cultivars (i.e., seven types of normal rice and three types of glutinous rice), and quality parameters (specific volume, texture profile, and crumb structure) of gluten-free bread from these flours were assessed. Significant differences were observed in flour properties among different types of rice. Significant correlations were observed between bread specific volume and rice amylose content (r = 0.91, p < 0.01), as well as pasting peak time (r = 0.86, p < 0.01) and final viscosity (r = 0.77, p < 0.01). Further, strong correlations were observed between bread resilience and properties of rice flour, such as amylose content (r = 0.91, p < 0.01), pasting peak viscosity (r = 0.83, p < 0.01), and final viscosity (r = 0.93, p < 0.01). In conclusion, the normal rice types exhibited much better gluten-free bread-making performances than glutinous flour. Important parameters of rice flour determining its gluten-free bread-making properties include amylose content, water retention capacity, and pasting properties. PRACTICAL APPLICATION: Compared with glutenous rice flour, normal rice flour leads to more viscous paste and gluten-free breads with larger volume, evener texture, and better resilience. This study provides guidance for practical uses of rice flours in improving gluten-free dough and bread quality.

Journal ArticleDOI
TL;DR: Lactobacillus plantarum HFY15 has obvious protective effects on CCl4 -induced liver injury by inhibiting oxidation, reducing the release of inflammatory factors, and exerting suppressive effect on apoptotic process in the CCl 4 - induced liver injury.
Abstract: Carbon tetrachloride (CCl4 ) is the main chemical causing liver damage. In this experiment, the effect of Lactobacillus plantarum HFY15 treatment on CCl4 -induced acute liver injury was investigated using mice. Fifty adult mice were randomized into five study groups, each group with 10 ml kg-1 saline, 50 mg kg-1 silymarin, and 109 CFU kg-1 L. plantarum HFY15 and LDSB per day, and all the mice expect the normal group were injected 0.8% CCl4 (10 ml kg-1 ) on the 14th day. Following the 16 h induction of the liver injury, various biochemical markers were assessed for blood and liver tissue. After L. plantarum HFY15 treatment, the content of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TG), malondialdehyde (MDA), and reactive oxygen species (ROS) in serum decreased by 67.7%, 65.0%, 41.9%, 59.5%, and 51.5%, respectively, and the level of antioxidant enzymes (total superoxide dismutation [T-SOD], catalase [CAT], glutathione [GSH]) increased by more than twofold. Pro-inflammatory cytokine interleukin-6 (IL-6), interferon-γ (INF-γ), and tumor necrosis factor-α (TNF-α) decreased by more than 45% in serum and live. What is more, L. plantarum HFY15 increased the expression of antiapoptosis genes Bcl-2 by eightfold, inhibiting the expression of proapoptotic genes Caspase-3 and Bax by about threefold. Lactobacillus plantarum HFY15 has obvious protective effects on CCl4 -induced liver injury by inhibiting oxidation, reducing the release of inflammatory factors, and exerting suppressive effect on apoptotic process in the CCl4 -induced liver injury. Lactobacillus plantarum HFY15 can be developed as edible lactic acid bacteria for preventing liver toxicity. PRACTICAL APPLICATION: L. plantarum HFY15 can alleviate liver injury caused by carbon tetrachloride toxicity through antioxidant, anti-inflammatory and anti-apoptotic pathways.

Journal ArticleDOI
TL;DR: Gel properties of threadfin bream surimi gels with squid fin protein hydrolysate (SFPH) at various concentrations (0, 1, 2, 3, and 4%; w/w) were determined as mentioned in this paper .
Abstract: Gel properties of threadfin bream surimi gels with squid fin protein hydrolysate (SFPH) at various concentrations (0, 1, 2, 3, and 4%; w/w) were determined. The gel without SFPH (CON) had the highest breaking force (BrF) and deformation (DeF) as compared to those with SFPH (p < 0.05). Among the gel with SFPH, gel containing 1 and 2% SFPH (SFPH-1 and SFPH-2, respectively) had the highest BrF, whereas the lowest value was obtained when 4% SFPH was used (SFPH-4) (p < 0.05). The whiteness of all samples was slightly decreased with an upsurging amount of SFPH. However, water holding capacity was increased with augmenting levels of SFPH (p < 0.05). Sensory analysis revealed that SFPH-2 had a higher squid odor and flavor likeness score than CON (p < 0.05). Textural properties, especially hardness, were decreased with increasing SFPH, except for SFPH-1 and SFPH-2 (p > 0.05). In addition, the rheological properties, microstructure, and volatile profile of the selected surimi gel were also studied. The storage modulus (G') of SFPH added samples was decreased as compared to the CON sample. The CON gel had a finer and more compact network as compared to SFPH-2 and SFPH-4 samples. Volatile profiles indicated that alcohols, carboxylic acids, ketones, and ether were the major volatile compounds present in both gel samples. Furthermore, thiophene, 3-methyl-, contributing to squid flavor, was found in the SFPH-2 sample. Overall, SFPH at 2% could act as a flavorant in the threadfin bream surimi gel without markedly negative impact on gelling and textural properties, while providing squid odor and flavor to the resulting gel. PRACTICAL APPLICATION: The various low-valued byproducts generated from the squid processing industry could result in various environmental problems. Those byproducts are rich in various biomolecules such as proteins, fats, enzymes, and so forth, which could be utilized to produce value-added products. Among them, protein hydrolysate (PH) rich in amino acids with excellent antioxidant properties could serve as an alternative flavorant. Therefore, PH from squid byproducts, especially fins, could be applied in foods such as fish balls, surimi gels, and so forth to enhance the nutritional and flavoring profile of a finished product. Moreover, bioactive peptides in PH with antioxidant potential could retard the oxidation of proteins and lipids.

Journal ArticleDOI
TL;DR: In this article , the authors reported the preparation and application of a monolithic nano-column for CAP and CAPG analyses in foods by ProFlow Nano liquid chromatography (ProFlow Nano LC).
Abstract: Chloramphenicol (CAP) is an effective antibiotic with broad spectrum against gram-positive and gram-negative bacteria, while it is used to treat various infections in animals. Although CAP is banned for usage in the livestock products including, milk, honey, seafood, and royal jelly, CAP is still often detected in foods of animal origin, posing a threat to consumer health. The use of CAP is restricted in many countries due to its side effect in human metabolic process according to the Expert Committee on Food Additives (ECFA) recommendation. Chloramphenicol glucuronide (CAPG) is also a metabolic product of CAP, which may be a hazardous chemical for human health. Therefore, the development of sensitive separation and quantification method is an important issue, especially for food safety. Herein, we reported the preparation and application of a monolithic nano-column for CAP and CAPG analyses in foods by ProFlow Nano liquid chromatography (ProFlow Nano LC). The monolithic nano-column was prepared by an in situ polymerization using 3-chloro-2-hydroxypropylmethacrylate (HPMA-Cl) and ethylene dimethacrylate (EDMA) and followed graphene oxide (GO) modification. After characterization, the monolithic nano-column was used for the analysis of CAP and CAPG in honey and milk samples by ProFlow Nano LC. The whole method was validated in terms of linearity, sensitivity, precision, recovery, and repeatability, while it led to obtain high sensitivity with limit of quantification was found as 0.02 µg/kg for CAP. Limit of quantification for CAPG was found as 0.08 µg/kg. The developed method with monolithic nano-column was optimized to achieve very sensitive analyses of CAP and CAPG in the food samples. The applicability of the nano-column was successfully demonstrated by the analysis of CAP and CAPG in milk and honey samples. PRACTICAL APPLICATION: This article describes the preparation and application of a monolithic nano-column for the separation and determination of chloramphenicol and chloramphenicol glucuronide in food samples by ProFlow Nano LC. The use of new and advanced techniques is a crucial issue in the food science and technology. In this sense, this study demonstrated a new food analysis method using advanced instrumental technique with a homemade monolithic nano-column.

Journal ArticleDOI
TL;DR: In this article , the effect of different glycosylation degrees on molecular structure and foaming property of EWP was investigated using ball milling-assisted glycolysis.
Abstract: The effect of different glycosylation degrees on molecular structure and foaming property of egg white protein (EWP) was investigated using ball milling-assisted glycosylation. The results showed the foaming ability (FA) and foam stability (FS) of EWP improved when the degree of glycosylation was increased. In particular, FA of ball milling-assisted glycosylation of EWP enhanced by 39.9% and 28.8%, and the FS increased by 28.7% and 24.0% compared with EWP and ball milling egg white protein (BE) at 150 min of reaction. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis could reflect the grafting degree of EWP and glucose molecules from the side. When EWP was fully grafted with glucose, endogenous fluorescence and free sulfhydryl groups indicated that tertiary structure of EWP was depolymerized, and Fourier transform infrared spectroscopy showed the secondary structure tended to change from order to disorder. The results of this study indicated that ball milling-assisted glycosylation modification was a practical method to improve the foaming property of EWP. PRACTICAL APPLICATION: EWP has great FA and FS, making it indispensable in the baking industry. In this study, ball milling-assisted glycosylation was used to improve the foaming property of EWP, and the molecular structure of EWP with different degrees of glycosylation was fully resolved. The results demonstrated that ball milling, as a physical pretreatment, can fully unfold the structure of EWP. When sugar molecules were fully grafted, the particle size of EWP reduced, solubility increased, and the stability of system improved, thus enhancing the foaming property of EWP. The results can provide theoretical basis for improving the foaming property of EWP and provide a reference value for its industrial application.

Journal ArticleDOI
TL;DR: The results indicate that the partial substitution of NaCl by KCl or CaCl2 during the pickling process of salted eggs could effectively inhibit the infiltration of Na+ , and the presence of KCl could improve the quality ofsalted eggs.
Abstract: KCl and CaCl2 were used as partial substitutes for NaCl during pickling salted eggs process in this study. The effects on the physicochemical properties, microstructure, textural properties and sensory quality of the salted eggs were evaluated, while comparing with the 18% NaCl group (Na group). The 3% replacement of NaCl by KCl reduced the Na content (p < 0.05), accelerated the water migration (p < 0.05) in salted eggs and increased the apparent oil yield and oil exudation of salted egg yolk (p < 0.05); but the rheological properties and microstructure of salted egg yolk were minimally affected. The 3% replacement of NaCl by CaCl2 reduced the Na content (p < 0.05), delayed the water migration rate (p < 0.05) in salted eggs and decreased the apparent oil yield and oil exudation of salted egg yolk (p < 0.05). Additionally, the process of egg white thinning and egg yolk hardening were delayed. The results indicate that the partial substitution of NaCl by KCl or CaCl2 during the pickling process of salted eggs could effectively inhibit the infiltration of Na+ , and the presence of KCl could improve the quality of salted eggs. Still, the presence of CaCl2 delay the ripening of salted eggs. PRACTICAL APPLICATION: KCl and CaCl2 as substitutes of sodium salt could play the role of reducing Na content but not affecting saline taste of salted eggs, which is conducive to the development of low-sodium salted eggs.

Journal ArticleDOI
TL;DR: In this article , the impact of different ultrasonic power on the structure and functional properties of wheat gliadin (WG) was investigated and compared, and the results indicated that ultrasonic treatment with appropriate power was a valuable method for improving functional characteristics of WG and GG.
Abstract: The impact of different ultrasonic power on the structure and functional properties of wheat gliadin (WG) and green wheat gliadin (GG) was investigated and compared. Ultrasound had no obvious effect on subunit composition and bands of WG and GG, and there were more small molecular weight bands in GG. The results of Fourier transform-infrared spectroscopy, intrinsic fluorescence spectroscopy, and scanning electron microscopy analyses demonstrated that ultrasonic treatment had a significant effect on the structure of WG and GG, inducing the transformation from order structure to disorder structure. The dispersion and uniformity were better at 400 and 300 W, respectively. Under proper ultrasonic treatment, the particle size of WG and GG was significantly reduced, and the free sulfhydryl groups and surface hydrophobicity were significantly increased (p < 0.05). Furthermore, the functional properties of WG and GG such as solubility, emulsification properties, water holding and oil holding properties, thermal stability, and digestibility were enhanced. The better functional properties of WG and GG were obtained at 400 and 300 W, respectively. These results indicated that ultrasonic treatment with appropriate power was a valuable method for improving functional characteristics of WG and GG. PRACTICAL APPLICATION: Ultrasonic treatment could cause structural changes of wheat gliadin (WG) and green wheat gliadin (GG), and their functional properties are improved under appropriate power. This study compares the effects of ultrasound on WG and GG, and the results will provide theoretical guidance for the development of GG in the food industry.

Journal ArticleDOI
TL;DR: Information on FAA composition of fresh and fermented pickling cucumbers shows the impact of fermentation conditions on cucumber amino acid profiles while providing insight for manipulating fermentations for health promotion and consumer acceptance.
Abstract: Free amino acid (FAA) profiles of fresh, acidified, naturally fermented, and starter culture fermented cucumbers were analyzed by liquid chromatography triple quadrupole mass spectrometry. Fermented cucumbers contained more total FAA than acidified cucumbers (1,302 ± 102 mg/kg and 635 ± 35 mg/kg, respectively). Total FAA content of fermented cucumber was similar regardless of brine salt levels (2-6% NaCl) and starter culture addition. Glutamine (1491.4 ± 69.3 mg/kg), γ-aminobutyric acid (GABA, 269.6 ± 21.4 mg/kg), asparagine (113.0 ± 6.4 mg/kg), and citrulline (110.3 ± 8.5 mg/kg) were the most abundant FAA in fresh pickling cucumber, whereas GABA (181.3 ± 21.5 mg/kg), isoleucine (165.2 ± 11.2 mg/kg), leucine (129.8 ± 10.9 mg/kg), and lysine (110.9 ± 5.0 mg/kg) were the most abundant in fermented cucumber. GABA and ornithine were produced during fermentation, indicating glutamate decarboxylase and arginine deiminase activities. Notably, ornithine was significantly higher in natural (63.3 ± 31.5 mg/kg) versus starter culture fermented cucumbers (3.0 ± 0.7 mg/kg). This new information on FAA composition of fresh and fermented pickling cucumbers shows the impact of fermentation conditions on cucumber amino acid profiles while providing insight for manipulating fermentations for health promotion and consumer acceptance. PRACTICAL APPLICATION: This study reports changes in the free amino acid profiles of raw, fermented and acidified cucumbers, which may be valuable for understanding the impact of these foods on human health and nutrition. This information is useful for food microbiologists studying the metabolism of lactic acid bacteria during fermentation and/or designing starter cultures and could contribute to the development of novel fermented cucumber pickle products with enhanced nutritional value.

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors evaluated the inhibitory effect and mechanism of L. robustum (Rxob.) Blume extract (LRE) on pancreatic lipase and showed that LRE exhibits significant antioxidant activities for scavenging free radicals and hydrogen peroxide, inhibiting lipid peroxidation and providing strong reducing power.
Abstract: Ligustrum robustum (Rxob.) Blume is traditionally served as a functional tea in China. In this work, the antioxidant activities of L. robustum (Rxob.) Blume extract (LRE) were evaluated and its inhibitory effect and mechanism on pancreatic lipase were further investigated. With the high contents of phenols (139.70 ± 1.41 mg gallic acid equivalent/g extract) and flavonoids (326.46 ± 7.36 mg rutin equivalent/g extract), LRE showed significant antioxidant activities (p < 0.05) for scavenging free radicals and hydrogen peroxide, inhibiting lipid peroxidation and providing strong reducing power. Meanwhile, LRE displayed remarkable inhibitory activity on pancreatic lipase with a low half-effective inhibitory concentration (IC50 ) of 2.469 ± 0.005 mg/ml which was further determined as non-competitive inhibition. The spectroscopic results showed that LRE inhibited the activity of pancreatic lipase by modifying the tertiary and secondary structures of lipase. Moreover, four phenolic compounds (acteoside, lipedoside A, oleuropein and ligurobustoside C) were identified from LRE by the high performance liquid chromatography-quadrupole- time of flight-mass spectrometry. In addition, according to molecular docking analysis, the four phenols could interact with pancreatic lipase by hydrogen bonds, so as to change the spatial structure of pancreatic lipase and inhibit its catalytic activity. The present results suggest that LRE not only exhibits strong antioxidant capacity but possesses effectively inhibitory activity on pancreatic lipase, which might have the potential to be developed as functional food and nutraceuticals for the prevention of metabolic diseases. PRACTICAL APPLICATION: Ligustrum robustum (Rxob.) Blume extract has been confirmed to possess antioxidant activity and lipase inhibitory activity, which indicates that the L. robustum extract has the potential to prevent oxidative stress and regulate fat metabolism. This work suggests that L. robustum extract can be served as a novel resource to prepare nutraceuticals and functional food in food industries.

Journal ArticleDOI
TL;DR: In this paper , the authors evaluated foam mat drying, spray drying, and freeze-drying for producing powder from coffee silverskin extracts, and the physicochemical properties of powders, such as water activity, moisture, wettability, hygroscopicity, solubility, color, antioxidant activity, and total phenolic were determined.
Abstract: Coffee silverskin is a coproduct that has a rich composition in bioactive compounds. However, most of these compounds are susceptible to the conditions used during food processing and storage. Encapsulation is a process of great interest to increase the stability of these bioactive compounds, and different methods can influence the final characteristics of the product. Therefore, this study aimed to evaluate the encapsulation methods by foam mat drying, spray drying and freeze-drying for producing powder from coffee silverskin extracts. Density, porosity, overrun, and stability foam were evaluated and the physicochemical properties of powders, such as water activity, moisture, wettability, hygroscopicity, solubility, color, antioxidant activity, and total phenolic were determined. The optimal condition required for the feed mixture for foam formation was 7.6% gum arabic, 2% maltodextrin, and 10.4% egg albumin. All methods presented powders with desirable values of water activity, moisture content, and hygroscopicity, being considered stable for storage, and high content of bioactive compounds. Higher temperatures for foam mat drying produced powders with higher encapsulation efficiency (>77%) and longer wettability than lower temperatures (50 and 60°C). Therefore, this study verified that foam mat drying can be considered an efficient and promising method for encapsulating bioactive compounds from coffee silverskin extract. PRACTICAL APPLICATION: Foam mat drying can be considered an alternative method to conventional encapsulation by spray drying and freeze-drying. This method is simple, inexpensive, and generates high-quality products. Optimization of foam properties is necessary to ensure successful drying.

Journal ArticleDOI
TL;DR: In this article , the main focus is to highlight different extraction techniques (both conventional and non-conventional) that can be implemented to extract the bioactive compounds from onion peel and assess their antioxidant activity.
Abstract: Functional food development is rapidly increasing as a result of consumer consciousness concerning healthy and nutritious foods. In turn, research exploring novel ingredients for formulating functional foods has been accelerated. Onion peel or skin is a byproduct obtained from onion processing that contains abundant phytochemicals, contributing to its antioxidant potential. The main focus of this review is to highlight different extraction techniques (both conventional and nonconventional) that can be implemented to extract the bioactive compounds from onion peel and assess their antioxidant activity. Furthermore, this review highlights the major areas for the application of onion peel and its extract as prospective functional ingredients, thus aiding in the preparation of designer foods with additional health benefits. The use of onion peel could also assist in redesigning popularly consumed processed foods, such as baked products, noodles or pasta, as packaging material, meat quality improvers, colorants, and juice clarifiers. This review serves as a preliminary document that can assist in exploring different ways of incorporating bioactive onion peels or skin into the functional food industry and concludes that future research can assist in the effective and efficient utilization of this resource.