scispace - formally typeset
Search or ask a question
JournalISSN: 1079-0268

Journal of Spinal Cord Medicine 

Maney Publishing
About: Journal of Spinal Cord Medicine is an academic journal published by Maney Publishing. The journal publishes majorly in the area(s): Spinal cord injury & Rehabilitation. It has an ISSN identifier of 1079-0268. Over the lifetime, 2139 publications have been published receiving 48535 citations. The journal is also known as: JSCM.


Papers
More filters
Journal ArticleDOI
TL;DR: The International Standards for Neurological Classification of Spinal Cord Injury (ISC-II) as mentioned in this paper is a set of international standards for the classification of spinal cord injury that were developed by the International Association of Neurological Diseases and Pathology (IANS).
Abstract: (2003). International Standards For Neurological Classification Of Spinal Cord Injury. The Journal of Spinal Cord Medicine: Vol. 26, No. sup1, pp. S50-S56.

1,931 citations

Journal ArticleDOI
TL;DR: The booklet describes the recommended International Standards examination, including both sensory and motor components, and describes the ASIA (American Spinal Injury Association) Impairment Scale (AIS) to classify the severity (i.e. completeness) of injury.
Abstract: This article represents the content of the booklet, International Standards for Neurological Classification of Spinal Cord Injury, revised 2011, published by the American Spinal Injury Association (ASIA). For further explanation of the clarifications and changes in this revision, see the accompanying article (Kirshblum S., et al. J Spinal Cord Med. 2011:doi 10.1179/107902611X13186000420242 The spinal cord is the major conduit through which motor and sensory information travels between the brain and body. The spinal cord contains longitudinally oriented spinal tracts (white matter) surrounding central areas (gray matter) where most spinal neuronal cell bodies are located. The gray matter is organized into segments comprising sensory and motor neurons. Axons from spinal sensory neurons enter and axons from motor neurons leave the spinal cord via segmental nerves or roots. In the cervical spine, there are 8 nerve roots. Cervical roots of C1-C7 are named according to the vertebra above which they exit (i.e. C1 exits above the C1 vertebra, just below the skull and C6 nerve roots pass between the C5 and C6 vertebrae) whereas C8 exists between the C7 and T1 vertebra; as there is no C8 vertebra. The C1 nerve root does not have a sensory component that is tested on the International Standards Examination. The thoracic spine has 12 distinct nerve roots and the lumbar spine consists of 5 distinct nerve roots that are each named accordingly as they exit below the level of the respective vertebrae. The sacrum consists of 5 embryonic sections that have fused into one bony structure with 5 distinct nerve roots that exit via the sacral foramina. The spinal cord itself ends at approximately the L1-2 vertebral level. The distal most part of the spinal cord is called the conus medullaris. The cauda equina is a cluster of paired (right and left) lumbosacral nerve roots that originate in the region of the conus medullaris and travel down through the thecal sac and exit via the intervertebral foramen below their respective vertebral levels. There may be 0, 1, or 2 coccygeal nerves but they do not have a role with the International Standards examination in accordance with the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI). Each root receives sensory information from skin areas called dermatomes. Similarly each root innervates a group of muscles called a myotome. While a dermatome usually represents a discrete and contiguous skin area, most roots innervate more than one muscle, and most muscles are innervated by more than one root. Spinal cord injury (SCI) affects conduction of sensory and motor signals across the site(s) of lesion(s), as well as the autonomic nervous system. By systematically examining the dermatomes and myotomes, as described within this booklet, one can determine the cord segments affected by the SCI. From the International Standards examination several measures of neurological damage are generated, e.g., Sensory and Motor Levels (on right and left sides), NLI, Sensory Scores (Pin Prick and Light Touch), Motor Scores (upper and lower limb), and ZPP. This booklet also describes the ASIA (American Spinal Injury Association) Impairment Scale (AIS) to classify the severity (i.e. completeness) of injury. This booklet begins with basic definitions of common terms used herein. The section that follows describes the recommended International Standards examination, including both sensory and motor components. Subsequent sections cover sensory and motor scores, the AIS classification, and clinical syndromes associated with SCI. For ease of reference, a worksheet (Appendix 1) of the recommended examination is included, with a summary of steps used to classify the injury (Appendix 2). A full-size version for photocopying and use in patient records has been included as an enclosure and may also be downloaded from the ASIA website (www.asia-spinalinjury.org). Additional details regarding the examination and e-Learning training materials can also be obtained from the website15.

1,858 citations

Journal ArticleDOI
TL;DR: For example, spinal tuberculosis is a destructive form of tuberculosis that causes the destruction of the intervertebral disk space and the adjacent vertebral bodies, collapse of the spinal elements, and anterior wedging leading to kyphosis and gibbus formation as mentioned in this paper.
Abstract: Spinal tuberculosis is a destructive form of tuberculosis. It accounts for approximately half of all cases of musculoskeletal tuberculosis. Spinal tuberculosis is more common in children and young adults. The incidence of spinal tuberculosis is increasing in developed nations. Genetic susceptibility to spinal tuberculosis has recently been demonstrated. Characteristically, there is destruction of the intervertebral disk space and the adjacent vertebral bodies, collapse of the spinal elements, and anterior wedging leading to kyphosis and gibbus formation. The thoracic region of vertebral column is most frequently affected. Formation of a ‘cold’ abscess around the lesion is another characteristic feature. The incidence of multi-level noncontiguous vertebral tuberculosis occurs more frequently than previously recognized. Common clinical manifestations include constitutional symptoms, back pain, spinal tenderness, paraplegia, and spinal deformities. For the diagnosis of spinal tuberculosis magnetic resonance imaging is more sensitive imaging technique than x-ray and more specific than computed tomography. Magnetic resonance imaging frequently demonstrates involvement of the vertebral bodies on either side of the disk, disk destruction, cold abscess, vertebral collapse, and presence of vertebral column deformities. Neuroimaging-guided needle biopsy from the affected site in the center of the vertebral body is the gold standard technique for early histopathological diagnosis. Antituberculous treatment remains the cornerstone of treatment. Surgery may be required in selected cases, e.g. large abscess formation, severe kyphosis, an evolving neurological deficit, or lack of response to medical treatment. With early diagnosis and early treatment, prognosis is generally good.

517 citations

Journal ArticleDOI
TL;DR: The latest revision of the International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI) was available in booklet format in June 2011, and is published in this issue of the Journal of Sp spinal Cord Medicine.
Abstract: The latest revision of the International Standards for the Neurological Classification of Spinal Cord Injury (ISNCSCI) was available in booklet format in June 2011, and is published in this issue of the Journal of Spinal Cord Medicine. The ISNCSCI were initially developed in 1982 to provide guidelines for the consistent classification of the neurological level and extent of the injury to achieve reliable data for clinical care and research studies. This revision was generated from the Standards Committee of the American Spinal Injury Association in collaboration with the International Spinal Cord Society's Education Committee. This article details and explains the updates and serves as a reference for these revisions and clarifications.

495 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202356
2022107
2021187
2020191
2019128
201893