scispace - formally typeset
Search or ask a question

Showing papers in "Material Science Research India in 2021"


Journal ArticleDOI
TL;DR: In this article, the authors looked at the impact of several variables on hydrogen fuel cell durability, including temperature, catalytic decay, contaminants, thermal energy and water maintenance, and fuel cell component design.
Abstract: Hydrogen fuel cell technology is now being researched extensively globally to provide a stable renewable energy source in the future. New research is aiding in improving performance, endurance, cost-efficiency, and the elimination of fuel cell limitations. Throughout the development process, the many aspects impacting the features, efficiency, durability, and cost of a fuel cell must be examined in a specific method. This review study looked at the impact of several variables on hydrogen fuel cell durability (HFC). In every sphere of fuel cell application, long-term operation is a must to make this electrochemical cell work. The major durability-enhancing aspects of a fuel cell include temperature, catalytic decay, contaminants, thermal energy and water maintenance, and fuel cell component design.

16 citations


Journal ArticleDOI
TL;DR: In this paper, a symmetric supercapacitor electrode material, rGO-SnO2-polyaniline nanocomposite, was synthesized using graphite oxide, SnCl2.2H2O, and pure Aniline as precursors in a scalable and straightforward one-pot process.
Abstract: A novel symmetric supercapacitor electrode material, rGO-SnO2-polyaniline nanocomposite,was synthesized using graphite oxide, SnCl2.2H2O, and pure Aniline as precursors in a scalable and straightforward one-pot process. Analysis revealed that the rGO-SnO2-polyaniline composite had been successfully synthesized. When the two-electrode supercapacitor was assembled using 1M H2SO4, it showed an outstanding specific gravimetric capacitance of 524.2 F/g at a 5 mV/s scan rate. To the best of our knowledge, such a higher value for a two-electrode specific capacitance for a supercapacitor was never reported.Furthermore, even at a high current density of 1 A/g, the material disclosed an outstanding charge-discharge characteristic. Thus, the rGO-SnO2-polyaniline nanocomposite couldalso be used as an electrode for commercial supercapacitors.

8 citations


Journal ArticleDOI
TL;DR: Shinde et al. as mentioned in this paper presented a density functional theory study of a chalcone derivative; (E)-3-(4-chlorophenyl)-1-(4methoxyphenyl)prop-2-en-1-one (CPMPP).
Abstract: Present investigation deals with the synthesis and density functional theory study (DFT) of a chalcone derivative; (E)-3-(4-chlorophenyl)-1-(4methoxyphenyl)prop-2-en-1-one (CPMPP). The synthesis of a CPMPP has been carried out by the reaction of 4-methoxyacetophenone and 4-chlorobenzalehyde in ethanol at 300C under ultrasound irradiation. The structure of a synthesized chalcone is affirmed on the basis of FT-IT, 1H NMR and 13C NMR. The geometry of a CPMPP is optimized by using the density functional theory method at the B3LYP/6-31G(d,p) basis set. The optimized geometrical parameters like bond length and bond angles have been computed. The absorption energies, oscillator strength, and electronic transitions have been derived at the TD-DFT method at the B3LYP/631G(d,p) level of theory for B3LYP/6-31G(d p) optimized geometries. The effect of polarity on the absorption energies is discussed by computing UV-visible results in dichloromethane (DCM). Since theoretically obtained wavenumbers are typically higher than experimental wavenumbers, computed wavenumbers were scaled with a scaling factor, and vibrational assignments were made by comparing experimental wavenumbers to scaled theoretical wavenumbers. Quantum chemical parameters have been determined and examined. Molecular electrostatic potential (MEP) surface plot analysis has been carried out at the same level of theory. Mulliken atomic charge study is also discussed in the present study. CONTACT Rohit S. Shinde chemistry.rss@gmail.com PG Department of Chemistry, Mahatma Gandhi Vidyamandir’s Arts, Science and Commerce College, Manmad, Taluka-Nandgaon, DistrictNashik, India-423104. (Affiliated to Savitribai Phule Pune University, Pune, maharashtra, India. © 2021 The Author(s). Published by Enviro Research Publishers. This is an Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Doi: http://dx.doi.org/10.13005/msri/180110 Article History Received: 23 March 2021 Accepted: 13 April 2021

4 citations


Journal ArticleDOI
TL;DR: A short review on a thermodynamically consistent multiphase phase-field approach for virtual melting has been presented in this paper, where the important outcomes of solid-solid phase transformations via intermediate melt have been discussed for HMX crystal.
Abstract: A short review on a thermodynamically consistent multiphase phase-field approach for virtual melting has been presented. The important outcomes of solid-solid phase transformations via intermediate melt have been discussed for HMX crystal. It is found out that two nanoscale material parameters and solid-melt barrier term in the phase-field model significantly affect the mechanism of PTs, induces nontrivial scale effects, and changes PTs behaviors at the nanoscale during virtual melting.

4 citations


Journal ArticleDOI
TL;DR: In this article, a co-precipitation of graphitic carbon nitride (g-C3N4- Co3O4nodes) and graphitic CO4-Co3O 4nodes was used for photocatlytic degradation of CarbolFuchsin (CF) dye.
Abstract: In the present investigation the material Co3O4 nanoparticles were prepared by co-precipitation method, while graphitic carbon nitride (g-C3N4) was prepared by direct heating of melamine. The nanocompositeg-C3N4- Co3O4were prepared by stoichiometric mixing and direct heating in porcelain boat followed by calcination. The prepared nanomaterials were characterized by various techniques. These both materials were characterized by XRD to get structural parameters and to confirm the average particle size of prepared nanomaterial. The scanning electron microscopy(SEM) was carried out to get surface characteristics of prepared materials. The energy dispersive spectroscopy was conducted to get elemental composition prepared material Co3O4and g-C3N4- Co3O4 .The transmission electron microscopy (TEM) was conducted to get lattice information of prepared material. While magnetic properties of both the material were investigated by means of vibrating sample magnetometer (VSM), since cobalt oxide is a ferromagnetic material. The surface area was confirmed from Brunauer-Emmett-Teller (BET) study. The g-C3N4- Co3O4nanocomposite has found enhanced surface areaof 78.48 m2/g in comparison to the sole Co3O4nanomaterial (55.23 m2/g). Both these prepared materials were utilized in photocatlytic degradation of CarbolFuchsin (CF) dye. The various parameters related to optimization of photocatlytic degradation of dyes were investigated in detail. The carbon nitride mediated cobalt oxide material is found to be very effective for degradation of CF dye and almost 97% of dye was successfully decomposed by the g-C3N4- Co3O4nanocomposite. The reusability test confirms that the prepared g-C3N4- Co3O4nanocomposite is very efficient in degradation of CF dye in multiple cycles with 110 minutes of contact time.

4 citations


Journal ArticleDOI
TL;DR: Kal et al. as discussed by the authors used scallop shells as a starting material to synthesize nanometer-size calcium hydroxide, which can be used as an inorganic antibacterial material in various composite systems.
Abstract: Globally increased bivalve aquaculture production results in a vast amount of by-product discharges such as scallop shells. Utilization of these wastes to produce new products such as antibacterial agents can cooperate to reduce environmental problems and provide a high value-added product at a lower cost. In this study, scallop shells are heat-treated at 800°, 900°, 1000°, and 1100°C for 4 hours at atmospheric conditions. X-ray diffraction analysis revealed that calcium carbonate is the only inorganic phase in the powdered scallop shells. Ten weeks after the thermal treatment of the scallop shells, the calcium hydroxide phase was the only crystalline phase determined by X-ray diffraction analysis for the samples calcined at 1000° and 1100°C. At lower calcination temperatures, calcium carbonate and calcium hydroxide phases were co-existing in the samples. Scanning electron microscopy investigations depicted that using scallop shells as a starting material to synthesize nanometer-sized calcium hydroxide is achieved. It was determined that applied calcination temperature has a significant effect on the particle size of the obtained calcium hydroxide phase. Antimicrobial activity of calcined and uncalcined shell powders were tested against Escherichia coli and Staphylococcus aureus. No antibacterial activity was detected for the uncalcined scallop shell powders. However strong antibacterial activity was determined for the powders after subjection to calcination. Calcination of scallop shells is an environmentally friendly, readily applied, and lowcost approach to achieve nanometer-size calcium hydroxide that can be used as an inorganic antibacterial material in various composite systems. CONTACT Ayse Kalemtas ayse.kalemtas@btu.edu.tr Bursa Technical University, Faculty of Engineering and Natural Sciences, Department of Metallurgical and Materials Engineering, Bursa, Turkey. © 2021 The Author(s). Published by Enviro Research Publishers. This is an Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Doi: http://dx.doi.org/10.13005/msri/180107 Article History Received: 27 November 2020 Accepted: 16 March 2021

3 citations



Journal ArticleDOI
TL;DR: In this paper, a review of most recent advancement in development of photo-catalyst for solar water splitting which is treated as a promising Green-Harvesting technique among all H2 generation techniques is presented.
Abstract: Fossil fuels are the most substantial & extensively used sources of energy for today’s world. Simultaneously, the unconscious exposure of toxic pollutants and green-house gases allied with fossil energy is not viable with contexture. Solar energy were treated as an auspicious source of energy from ancient age because of its richness & cleanness. But problem arises in its capture, storage, transformation, and distribution. That’s why scholars are trying to convert this renewable light energy to a user friendly and viable form of energy. By analyzing recent studies on H2 fuel it is considered as most lucrative choice for clean and sustainable fuel with high calorific value & zero pollution. This review offers an overview of most recent advancement in development of photo-catalyst for solar water splitting which is treated as a promising Green-Harvesting technique among all H2 generation techniques. Here we discussed about various catalyst development techniques especially about doping techniques, reactor design and light scattering/trapping systems.We found that among all doping is a promising technique and a lots of study have been done on this technique than others like as Hetero junction, Dye sensitization, modification of surface or nanostructure formation. Hence we concluded with the decision that, more research are needed on hetero junction and nanostructure formation along with elemental doping.

2 citations


Journal ArticleDOI
TL;DR: In this article, the fabrication of stannous oxide nanoparticles by conventional and cost effective co precipitation method was discussed, where the thickness of the nanoparticles was calculated using Debye-Scherer formula.
Abstract: The present research deals with the fabrication of stannous oxide nanoparticles by conventional and cost effective co precipitation method. The thick film sensors of SnO2 nanoparticles were prepared by standard screen-printing technique by photolithography. The prepared SnO2 material was characterized by several techniques to confirm the structural properties. Initially, the prepared nanoparticles of SnO2 were investigated by x-ray diffraction technique to confirm the synthesis of prepared material within nanoscale. From XRD data the average particle size of prepared thick films was found to be 21.87 nm calculated using Debye-Scherer formula. The material was further characterized by using scanning electron microscopy (SEM) to investigate the structural and surface characteristic of SnO2. SEM data clearly indicates the heterogeneous surface, and some voids present over the surface of SnO2 nanoparticles. The Fourier transfer infra red technique was employed to investigate the metal oxygen frequency of SnO2 material. The prepared sensor was exclusively utilized to sense the hydrogen sulfide gas vapors at various concentrations. The prepared sensor was found to be highly sensitive to H2S vapors nearly 63.8% sensitivity was recorded. The response and recovery study shows the response time of 9 seconds and recovery time of 19 seconds for hydrogen sulfide gas vapors. The SnO2 sensor was further utilized for recycling performance to get the firm results of sensitivity in four turns with period of 15 days. CONTACT Umesh Jagannath Tupe umeshtupe14@gmail.com Department of Electronic Science, Fergusson College, FC Road, Shivajinagar, Pune, Maharashtra, India. © 2021 The Author(s). Published by Enviro Research Publishers. This is an Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Doi: http://dx.doi.org/10.13005/msri/180108 Article History Received: 20 November 2020 Accepted: 22 March 2021

2 citations


Journal ArticleDOI
TL;DR: Basavaraju Bennehalli et al. as mentioned in this paper investigated the tensile and flexural behaviour of benzoyl peroxide treated areca sheath fiber epoxy composites.
Abstract: Natural fibre composites are playing great role in current life scenario where the focus is more on replacing synthetic fibre composites with natural fibre composites. In this current study, investigation was done on tensile and flexural behaviour of benzoyl peroxide treated areca sheath fibre epoxy composites. The surface modification of the fibre was confirmed by FTIR analysis. Treatment concentration was the major criteria which effects mechanical properties of the composites. At 4% concentration tensile strength and flexural strength was found to be maximum which was reported as 37.05 N/mm2 and 235.5 N/mm2 respectively which gradually decreased with increasing concentration of benzoyl peroxide. SEM analysis proved that at lesser concentration, the bonding between fibre and resin was effective which reduced as the concentration of benzoyl peroxide increased. This results in ineffective stress transfer between reinforcing material and the matrix which was the reason for failure of composites manufactured at higher treatment concentration. CONTACT Basavaraju Bennehalli basavaraju_b@yahoo.co.in Department of Chemistry, Alva’s Institute of Engineering & Technology, Affiliated to Visvesvaraya Technological University, Mijar-574225, Karnataka, India. © 2021 The Author(s). Published by Enviro Research Publishers. This is an Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Doi: http://dx.doi.org/10.13005/msri/180106 Article History Received: 31 December 2020 Accepted: 03 March 2021

2 citations


Journal ArticleDOI
TL;DR: Ganesh B. Yelmame et al. as mentioned in this paper provided an overview of various synthetic methodologies for the synthesis of a wide range of perimidine derivatives with applications in material chemistry, drug discovery, polymer chemistry, photo sensors, dye chemistry, and other fields.
Abstract: Perimidines are available in an assortment of drugs and general use industrial structures and perimidines are also significant primary theme because of their extraordinary method of physiological activity. Thus the underlying significance of perimidine moiety has evoked a lot of interest in the field of natural blend and compound science to build up some better than ever amalgamation of this atomic skeleton. In this review, we have depicted a modern outline on the new advances in the different manufactured approaches of perimidine. The review covers the essential applied and down to earth synergist blend like, green methodologies, metal catalysed responses, microwave illumination, grinding and so forth which are critical for developing perimidine skeleton. This review will fulfill the assumptions for peruses who are keen on the advancement of the field and searching for an update. It will animate analysts to grow new and innovative manufactured admittance to this heterocyclic framework, which will be instrumental in the headway of perimidine science. This review provides an overview of various synthetic methodologies for the synthesis of a wide range of perimidine derivatives with applications in material chemistry, drug discovery, polymer chemistry, photo sensors, dye chemistry, and other fields. CONTACT Ganesh B. Yelmame yelmameganesh@gmail.com Department of Chemistry, Mahatma Gandhi Vidyamandir’s SPH.Arts, Science and Commerce College, Nampur, Nashik-423 204, India (Affiliated to SP Pune University, Pune) © 2021 The Author(s). Published by Enviro Research Publishers. This is an Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Doi: http://dx.doi.org/10.13005/msri/180103 Article History Received: 20 March 2021 Accepted: 14 April 2021

Journal ArticleDOI
TL;DR: Solid form screening studies guide an important decision-making of lead solid form which is likely to play a vital role during the pharmaceutical product development lifecycle.
Abstract: In recent years, solid form screening has become an integral and mandatory part of drug development. Solid form screening typically involves producing and characterizingmaximum possible solid forms of a potential drug candidate. Different types of solid forms for future drug product development includes salt screening, co-crystal screening, crystallization process development, polymorph screening as well as amorphous solid dispersion screening.Screening studies of a solid form is a set of carefully designed experiments that requires use of advanced analytical techniques to collect analytical data followed by a thoughtful data analysis.This solid form screening studies guide an important decision-making of lead solid form whichis likely to play a vital role during the pharmaceutical product development lifecycle. The selection criteria include pharmaceutically relevant properties, such as therapeutic efficacy and processing characteristics as well as role of physicochemical properties (i.e. solubility, dissolution rate, hygroscopicity, physical stability and chemical purity) in drug product development. A selected solid form, if thermodynamically unstable, it may undergo solid form changes upon exposure to environmental conditions such as temperature and relative humidity as well as manufacturing stress during the pharmaceutical unit operations. In thepresent work, fundamentals of solid form screening are discussed, including the experimental screening methodologies as well as characterization and analysis of solid forms. The importance of drug product risk assessment pertaining to the desired solid form are also discussed here.


Journal ArticleDOI
TL;DR: Murthy et al. as mentioned in this paper reviewed various 3D printing techniques like Selective Laser Sintering (SLS), Fused Deposition Modeling, (FDM), Semi-solid extrusion (SSE), Stereolithography (SLA), Thermal Inkjet (TIJ) printing, and Binder jetting 3D Printing along with their application in the field of medicine.
Abstract: Three-dimensional printing (3DP) is a digitally-controlled additive manufacturing technique used for fast prototyping. This paper reviews various 3D printing techniques like Selective Laser Sintering (SLS), Fused Deposition Modeling, (FDM), Semi-solid extrusion (SSE), Stereolithography (SLA), Thermal Inkjet (TIJ) Printing, and Binder jetting 3D Printing along with their application in the field of medicine. Normal medicines are based on the principle of “one-size-fits-all”. This is not true always, it is possible medicine used for curing one patient is giving some side effects to another. To overcome this drawback “3D Printed medicines” are developed. In this paper, 3D printed medicines forming different Active Pharmaceutical Ingredients (API) are reviewed. Printed medicines are capable of only curing the diseases, not for the diagnosis. Nanomedicines have “theranostic” ability which combines therapeutic and diagnostic. Nanoparticles are used as the drug delivery system (DDS) to damaged cells’ specific locations. By the use of nanomedicine, the fast recovery of the disease is possible. The plant-based nanoparticles are used with herbal medicines which give low-cost and less toxic medication called nanobiomedicine. 4D and 5D printing technology for the medical field are also enlightened in this paper. CONTACT Hari Murthy hari.murthy@christuniversity.in Department of Electronics and Communication Engineering CHRIST (Deemed to be University), Bengaluru. © 2021 The Author(s). Published by Enviro Research Publishers. This is an Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Doi: http://dx.doi.org/10.13005/msri/180102 Article History Received: 28 January 2021 Accepted: 13 April 2021

Journal ArticleDOI
TL;DR: In this paper, Shuib Pasha S A shuaib8787@gmail.com used stir casting method for performing the mechanical properties of metal matrix composite (MMCs).
Abstract: Composite materials are defined as material systems consisting of mixture of or combination of two or more micro constituents insoluble in each other and differing in form and or material composition. In this study Metal Matrix Composite (MMCs) has been produced using stir casting method for performing the mechanical properties. Most of the engineering industries want light and better mechanical properties of components; this can be achieved by MMCs of Aluminium because of its excellent performance. In this research work we fabricate the Aluminium by liquid route. Here Al 7075 is used as a base metal and Multi Walled Carbon Nanotubes (MWCNT) used as sub metal with various percentages. Experiments were conducted to analyze microstructure, hardness & tensile strength. By using optical microscope and Scanning Electron Microscope (SEM) we analyze the sample specimens are well dispersion in MWCNT with AA 7075. Hardness and tensile strength increases with increasing of wt. %. Hardness of material increases with increase in percentages of MWCNT, whereas tensile strength of the material increases with increase in percentages of MWCNT and Elongation reduces. CONTACT Shuib Pasha S A shuaib8787@gmail.com Department of Mechanical Engineering, Brindavan College of Engineering, Bangalore-560063, VTU, Karnataka, India. © 2021 The Author(s). Published by Enviro Research Publishers. This is an Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Doi: http://dx.doi.org/10.13005/msri/180111 Article History Received: 12 December 2020 Accepted: 07 April 2021

Journal ArticleDOI
TL;DR: Mahmood et al. as mentioned in this paper used co-precipitation to obtain BaM hexaferrite (BaFe12O19; M-type; BaM) with pH = 12.5 and sintered at 860, 920 and 990°C.
Abstract: Barium hexaferrite (BaFe12O19; M-type; BaM) is an important, cost effective magnetic material for permanent magnet applications. The magnetic properties of the prepared samples, and the purity of the BaM phase depend critically on the synthesis route and experimental conditions. In this study, BaM hexaferrites were prepared by co-precipitation method using two different values of pH for the precursor solutions (11.0 and 12.5), and sintering pellets of the coprecipitates at 860, 920 and 990°C.The prepared samples were characterized using X-ray diffraction and magnetic measurements. X-ray diffraction patterns indicated that the samples prepared with pH = 12.5 consisted of a single BaM phase at all sintering temperatures. However, the patterns of the samples with pH = 11.0 did not reveal the existence of BaM at 860°C, whereasa major BaM phase (86 – 87 wt.%) was observed at 920 and 990°C with a minor α-Fe2O3 phase. The thermo magnetic curves confirmed the BaM magnetic phase in the samples. The hysteresis loops of the BaM samples showed characteristics of hard magnetic materials with relatively high saturation magnetization. Analysis of the magnetic data indicated an intrinsic coercivity Hci~ 5 kOe for all samples, and a saturation specific magnetization in the range σs = 56.0 – 66.3 emu/g, which are suitable for permanent magnet applications. The practical coercivity (HcB), residual induction (Br) and maximum energy product (BH)max of the samples with pH = 12.5 are higher than those of the samples with pH = 11.0, and the highest magnetic parameters of HcB = 1871 Oe, Br = 2384 G, and (BH)max = 8.92 kJ/m3 were observed for the sample with pH = 12.5 and sintered at 860°C. CONTACT Sami H.Mahmood s.mahmood@ju.edu.jo Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824, USA. © 2021 The Author(s). Published by Enviro Research Publishers. This is an Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Doi: http://dx.doi.org/10.13005/msri/180105 Article History Received: 21 November 2020 Accepted: 27 January 2021

Journal ArticleDOI
TL;DR: In this article, a method for one-pot synthesis of 3,4-dihydropyrimidine-2(1H)-one/thione derivatives from the 1,3-dicarbonyl compound, urea/thiourea, and various aromatic aldehydes was presented.
Abstract: Using the synthetic potential of recyclable zinc oxide(ZnO) nanoparticles (NPs), a proficient, elegant, and rapid one-pot synthesis of a variety of 3,4-dihydropyrimidine-2(1H)-one/thione derivatives from the1,3-dicarbonyl compound, urea/thiourea, and various aromatic aldehydes havebeen unveiled in the present research. TheZnONPs were synthesized by theco-precipitation method. The powder X-ray diffraction method was employed for the determination of thecrystallite size of the synthesized ZnONPs.The hexagonal phase was obtained in the XRD pattern of the synthesized ZnO NPs with anaverage crystallite size of 25 nm.The current synthetic strategy offers excellent yields, a short reaction time, favorable reaction conditions, easy transformation, non-chromatographic product purification, and catalyst recyclability. Furthermore, the catalyst could be retrieved and reused without losing any of its catalytic activity. As a result, this elegant protocol is an adequate method fordihydropyrimidinone/thione synthesis.

Journal ArticleDOI
TL;DR: In this paper, the surface replica method is deepened to detect flaws of small initial cracks and evaluate fatigue crack growth for high performance flying or ground machines (airplanes, automobiles, etc.).
Abstract: The behavior of structures, machine or components made of composite materials or light high-performance alloys is still a great concern for applications in which high strength-to-mas-ratio is a fundamental requirement. Procedures to detect flaws of small initial cracks and evaluate fatigue crack growth are nowadays essentials for high performance flying or ground machines (airplanes, automobiles,...). Structural reliability and structural health monitoring are considered in this paper and the surface replica method is deepened. Numerical FEM models were developed to assist the surface replica method analysis of the results.Ti6Al4V alloy was considered. This paper is a short technical communication

Journal ArticleDOI
TL;DR: In this article, a binary liquid mixture that consists of ethyl acetate and 1-ethanol has been prepared at various concentrations by the mole fraction method and the ultrasonic velocity and density have been determined at 303K, 308K and 313K.
Abstract: A binary liquid mixture that consists of ethyl acetate and 1-ethanol has been prepared at various concentrations by the mole fraction method. The ultrasonic velocity and density have been determined at 303K, 308K and 313K. From the experimental data, the excess isentropic compressibility, excess molar volumes, excess internal pressures, and excess molar enthalpy have been computed. The variations were observed as polynomial and fitted to the Redlich-Kister polynomial functions. By using this function, adjustable parameters and the standard deviations have been calculated. The experimental and theoretical data reveal that the existence of the intermolecular interactions between the selected liquid system. The partial molar compressibility’s and partial molar volume also calculated at infinite dilution of the system. In general, the intermolecular forces have tended to the variations in the magnitude and sign of the excess parameters. The excess molar volume (Vme), excess isentropic compressibility (), excess internal pressure ( ) and the enthalpy ( ) show the negative magnitude at the entire range of concentrations and temperatures. The significant variations of these parameters with the mole fraction of ethyl acetate have been analysed. Furthermore, the strength of the intermolecular interactions decreased with increasing the experimental temperatures as 303K > 308K >313K.

Journal ArticleDOI
TL;DR: In this article, the authors synthesize the ethyl 6amino-5-cyano-2-methyl-4-(4-nitrophenyl)-4H-pyran-3-carboxylate (ACNPPC) using an environmentally friendly method and looked into in terms of structural, UV-visible, vibrational, and computational analysis.
Abstract: The ethyl 6-amino-5-cyano-2-methyl-4-(4-nitrophenyl)-4H-pyran-3-carboxylate (ACNPPC) was synthesized using an environmentally friendly method and looked into in terms ofstructural, UV-visible, vibrational, and computational analysis. In the gaseous phase, calculations of the density functional theory (DFT) with B3LYP/6-311G(d,p) level were performed. Using Time-dependent density functional theory (TD-DFT) with the B3LYP/6-311G(d,p) basis set method, the HOMO and LUMO energies are calculated. For assessing electrophilic and nucleophilic reactive sites, the molecular electrostatic surface potential (MESP) and contour plot were plotted over the optimized structure. Using computed and experimental vibrational spectra, vibrational assignments were elucidated. To illustrate the charge density in the title compound, Mulliken atomic charges are disclosed. In addition, using vibrational analysis, some thermochemical functions have also been derived. Theoretical simulations have shown the best relationship with experimental results obtained with the B3LYP/6-311G(d,p) level of theory at the DFT and TD-DFT methods.

Journal ArticleDOI
TL;DR: In this article, a 2-(p-tolyl)-2,3-dihydro-1H-perimidine (TDHP) is synthesized from 1,8-naphthalenediamine and 4-methylbenzaldehyde by embedding a one-carbon unit between the nitrogen followed by ring closure using green chemistry approach.
Abstract: In the present study, 2-(p-tolyl)-2,3-dihydro-1H-perimidine (TDHP) is synthesized from 1,8-naphthalenediamine and 4-methylbenzaldehyde by embedding a one-carbon unit between the nitrogen followed by ring closure using green chemistry approach. 1H NMR and 13C NMR spectral techniques were used to validate the structure of the TDHP. The synthesized perimidine TDHP is studied using density functional theory (DFT) to provide valuable insights into structural, chemical, and thermochemical study.The structural and chemical properties of TDHP were computed using the DFT method on the B3LYP/6-311G(d,p) basis package. Bond lengths were predicted from the optimized molecular structure, and the physical and chemical properties of the molecules were inferred as a consequence. The HOMO and LUMO are computed, and quantum chemical parameters are determined using electronic energies. The calculated HOMO-LUMO energy gap is 4.25 eV indicating charge transfer phenomenon within the molecule. The electron density and chemical behaviour of the TDHP was predicted using Mulliken atomic charges and the molecular electrostatic surface potential plot. Amongst all carbon atoms, the C8 carbon as more positive and C27 as more negative carbon atoms. The high global electrophilicity index suggests electrophilic character of the TDHP. The harmonic vibrational frequencies were used to measure total energy, total molar entropy, and molar heat capacity. CONTACT Vishnu A. Adole vishnuadole86@gmail.com Department of Chemistry, Mahatma Gandhi Vidyamandir’s Arts, Science and Commerce College, Manmad, Nashik-423 104, India. (Affiliated to SP Pune University, Pune). © 2021 The Author(s). Published by Enviro Research Publishers. This is an Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Doi: http://dx.doi.org/10.13005/msri/180109 Article History Received: 03 March 2020 Accepted: 12 April 2021

Journal ArticleDOI
TL;DR: In this article, the analysis of magnesium alloy corrosion resistance using various analytical methods in SEM (Scanning Electron Microscopy) has been performed on magnesium alloy electrodes, the material used for saltwater lantern batteries.
Abstract: Microstructural analysis has been performed on magnesium alloy electrodes, the material used for saltwater lantern batteries. This research aims to obtain detailed and accurate information needed to support the analysis of magnesium alloy corrosion resistance caused by the electrolysis process using various analytical methods in SEM(Scanning Electron Microscopy). It is a tool that uses an electron beam to display the surface structure and composition of a test material. The test carried out on this magnesium alloy electrode is to crush the electrode into a fine powder. Then the powder is put into a container for SEM-EDS testing. Magnifications start from 1,000xuntil 15,000x. The results showed that the greater the magnification on the microscope, the more it was seen that the lumps looked brittle. Then on the surface of the magnesium alloy electrodes, 58.00 wt% magnesium material is contained.

Journal ArticleDOI
TL;DR: In this article, a review about the hybrid composite fabrication from artificial fibers of polymer composite for marine propellers is presented, which consists of properties such as tensile modulus, compressive and impact strength which cannot be realized in composite materials.
Abstract: Parts and constructions performance in the marine environments are subjected to high stress a priori to the measures of wind and waves. This review involve about the hybrid composite fabrication from artificial fibers of polymer composite. Hybrid composite furnish combination of property such as tensile modulus, compressive and impact strength which cannot realized in composite materials. The materials used for marine propellers of a varying number of blades with the fixed and controllable pitch having different diameters and skew angles and type of propellers were reviewed. Structural simulation, erosion wear tests, cavitations, bend twist coupling analyses, CFD case studies, fluid simulation method reviewed in this paper. Glass fiber composites proved to be economical and its adaptable in economical point of view. Carbon fiber composite propellers have more advantages than others with little compromise. In current scenario hybrid composite have been established as highly efficient, structural materials, high performances and their use is rapidly increasing. The current paper outline the utilizing of hybrid composite material for marine propellers as their versatility in enhancing good results. CONTACT Abdul Raheem abdulraheem3030@gmail.com Department of Mechanical Engineering, Brindavan College of Engineering, Bangalore-560063,VTU, Karnataka, India. © 2021 The Author(s). Published by Enviro Research Publishers. This is an Open Access article licensed under a Creative Commons license: Attribution 4.0 International (CC-BY). Doi: http://dx.doi.org/10.13005/msri/180101 Article History Received: 12 December 2020 Accepted: 27 January 2021