scispace - formally typeset
Search or ask a question

Showing papers in "Planta Medica in 2022"


Journal ArticleDOI
TL;DR: In this article , an ultra-high performance liquid chromatography-high resolution mass spectrometry method was developed for the analysis of 8 indole alkaloids (7-hydroxymitragynine, ajmalicine, paynantheine, mitragynines, speciogynine, isopaynantheines, and speciociliatine) and 6 oxindole alphabets (isomitraphyllines, isospeciofoleine, speciofoline, Corynoxine A, corynoxeine, and rhynchophylline) in US-grown kratom plants and commercial products.
Abstract: Many consumers are turning to kratom (Mitragyna speciosa) to self-manage pain and opioid addiction. In the United States, an array of capsules, powders, and loose-leaf kratom products are readily available. Additionally, several online sites supply live kratom plants. A prerequisite to establishing quality control and quality assurance standards for the kratom industry, or understanding how alkaloid levels effect clinical outcomes, is the identification and quantitation of major and minor alkaloid constituents within available products and preparations. To this end, an ultra-high performance liquid chromatography-high resolution mass spectrometry method was developed for the analysis of 8 indole alkaloids (7-hydroxymitragynine, ajmalicine, paynantheine, mitragynine, speciogynine, isopaynantheine, speciociliatine, and mitraciliatine) and 6 oxindole alkaloids (isomitraphylline, isospeciofoleine, speciofoline, corynoxine A, corynoxeine, and rhynchophylline) in US-grown kratom plants and commercial products. These commercial products shared a qualitatively similar alkaloid profile, with 12 - 13 detected alkaloids and high levels of the indole alkaloid mitragynine (13.9 ± 1.1 - 270 ± 24 mg/g). The levels of the other major alkaloids (paynantheine, speciociliatine, speciogynine, mitraciliatine, and isopaynantheine) and the minor alkaloids varied in concentration from product to product. The alkaloid profile of US-grown M. speciosa "Rifat" showed high levels of the indole alkaloid speciogynine (7.94 ± 0.83 - 11.55 ± 0.18 mg/g) and quantifiable levels of isomitraphylline (0.943 ± 0.033 - 1.47 ± 0.18 mg/g). Notably, the alkaloid profile of a US-grown M. speciosa seedling was comparable to the commercial products with a high level of mitragynine (15.01 ± 0.20 mg/g). This work suggests that there are several M. speciosa chemotypes.

8 citations


Journal ArticleDOI
TL;DR: In this article , commercial Origanum essential oils were evaluated for their in vitro and in-silico angiotensin-converting enzyme 2 and lipoxygenase enzyme inhibitory potentials.
Abstract: Origanum spp. are used both for culinary purposes and for their biological activities. In this study, commercial Origanum majorana, Origanum minutiflorum, Origanum vulgare, and Origanum onites essential oils and their prominent constituent carvacrol were evaluated for their in vitro and in silico angiotensin-converting enzyme 2 and lipoxygenase enzyme inhibitory potentials. The essential oils were analysed by gas chromatography-flame ionisation detection and gas chromatography-mass spectrometry, where carvacrol was identified as the major component (62 - 81%), confirming the quality. In vitro enzyme inhibition assays were conducted both with the essential oils (20 µg/mL) and with carvacrol (5 µg/mL). The comparative values of angiotensin-converting enzyme 2 percent inhibition for O. majorana, O. minutiflorum, O. vulgare, and O. onites essential oils were determined as 85.5, 79.1, 74.3, and 42.8%, respectively. As a result of the enzyme assays, carvacrol showed 90.7% in vitro angiotensin-converting enzyme 2 inhibitory activity. The in vitro lipoxygenase inhibition of the essential oils (in the same order) was 89.4, 78.9, 81.1, and 73.5%, respectively, where carvacrol showed 74.8% inhibition. In addition, protein-ligand docking and interaction profiling was used to gain structural and mechanistic insights into the angiotensin-converting enzyme 2 and lipoxygenase inhibitory potentials of major Origanum essential oil constituents. The in silico findings agreed with the significant enzyme inhibition activity observed in vitro. Further in vivo studies are suggested to confirm the safety and efficacy of the oils.

6 citations


Journal ArticleDOI
TL;DR: The present review describes the plant origin, molecular structure, and absorption and fluorescence features of the 73 phyllobilins, along with an overview of key medicinal properties, and should provide an enabling tool for the community for the straightforward identification of phyll Mobilins in plant extracts.
Abstract: Abstract Phyllobilins are open-chain products of the biological degradation of chlorophyll a in higher plants. Recent studies reveal that phyllobilins exert anti-oxidative and anti-inflammatory properties, as well as activities against cancer cells, that contribute to the human health benefits of numerous plants. In general, phyllobilins have been overlooked in phytochemical analyses, and – more importantly – in the analyses of medicinal plant extracts. Nevertheless, over the past three decades, > 70 phyllobilins have been identified upon examination of more than 30 plant species. Eight distinct chromophoric classes of phyllobilins are known: phyllolumibilins (PluBs), phylloleucobilins (PleBs), phylloxanthobilins (PxBs), and phylloroseobilins (PrBs)–each in type-I or type-II groups. Here, we present a database of absorption and fluorescence spectra that has been compiled of 73 phyllobilins to facilitate identification in phytochemical analyses. The spectra are provided in digital form and can be viewed and downloaded at www.photochemcad.com. The present review describes the plant origin, molecular structure, and absorption and fluorescence features of the 73 phyllobilins, along with an overview of key medicinal properties. The review should provide an enabling tool for the community for the straightforward identification of phyllobilins in plant extracts, and the foundation for deeper understanding of these ubiquitous but underexamined plant-derived micronutrients for human health.

6 citations


Journal ArticleDOI
TL;DR: The isolated compounds from Magnoliae Flos that activate melanin synthesis in melanoma cells and three-dimensional human skin equivalent demonstrate the potential of 5: as a potent therapeutic agent for hypopigmentation.
Abstract: Magnoliae Flos is a traditional herbal medicine used to treat nasal congestion associated with headache, empyema, and allergic rhinitis. In our preliminary screening of crude drugs used in Japanese Kampo formulas for melanin synthesis, the methanol extract of Magnoliae Flos was found to exhibit strong melanin synthesis activity. However, there have been no studies evaluating the effects of Magnoliae Flos or its constituents on melanogenesis. The present study aimed to isolate the active compounds from Magnoliae Flos that activate melanin synthesis in melanoma cells and three-dimensional human skin equivalent, and to investigate the molecular mechanism underlying melanin induction. The methanol extract of Magnoliae Flos induced an increase of melanin content in both B16-F1 and HMV-II cells. A comparison of melanin induction by three fractions prepared from the extract showed that the ethyl acetate fraction markedly induced melanin synthesis. Bioassay-guided separation of the ethyl acetate fraction resulted in the isolation of seven lignans (1: - 7: ). Among them, (+)-magnolin (5: ) strongly induced melanin synthesis and intracellular tyrosinase activity. Furthermore, the ethyl acetate fraction and 5: clearly induced melanin content in a three-dimensional human skin equivalent. Molecular analysis revealed that 5: triggered the protein expression of tyrosinase, tyrosinase-related protein-1, and tyrosinase-related protein-2. Further analysis of transcriptional factors and signaling pathways demonstrated that 5: induces the protein expression of tyrosinase, tyrosinase-related protein-1, and tyrosinase-related protein-2 activated by the protein kinase A- and p38 mitogen-activated protein kinase-dependent pathways, leading to cAMP-responsive element-binding protein phosphorylation and microphthalmia-associated transcription factor expression. These findings demonstrate the potential of 5: as a potent therapeutic agent for hypopigmentation.

5 citations


Journal ArticleDOI
TL;DR: In this paper , the authors developed a natural deep eutectic solvent-based extraction method for galanthamine, an important therapeutic agent for the treatment of Alzheimerʼs disease.
Abstract: Abstract The isolation of a compound from a natural source involves many organic and mostly toxic solvents for extraction and purification. Natural deep eutectic solvents have been shown to be efficient options for the extraction of natural products. They have the advantage of being composed of abundantly available common primary metabolites, being nontoxic and environmentally safe solvents. The aim of this study was to develop a natural deep eutectic solvent-based extraction method for galanthamine, an important therapeutic agent for the treatment of Alzheimerʼs disease. This alkaloid can be produced by synthesis or by extraction from Narcissus bulbs. To develop an efficient extraction method, a number of different natural deep eutectic solvents was first tested for their solubilization capacity of galanthamine bromide salt. Promising results were obtained for ionic liquids, as well as some amphoteric and acidic natural deep eutectic solvents. In a two-cycle extraction process, the best solvents were tested for the extraction of galanthamine from bulbs. The ionic liquids produced poor yields, and the best results were obtained with some acid and sugar mixtures, among which malic acid-sucrose-water (1 : 1 : 5) proved to be the best, showing similar yields to that of the exhaustive Soxhlet extraction with methanol. Furthermore, the natural deep eutectic solvent was more selective for galanthamine.

4 citations


Journal ArticleDOI
TL;DR: An EU-wide approach is needed to facilitate free distribution of such products between EU member states in future and to harmonise requirements for quality and GMP, by implementing monographs for cannabis medicinal products in the European Pharmacopoeia.
Abstract: Abstract Medicinal cannabis and respective products have been available in EU member states as single-patient prescriptions without regular marketing authorizations for a couple of years. The Netherlands was the first member state to realize this; in the meantime other member states have followed. Today, aside from the Netherlands, Germany is the most important market for such products. The regulatory framework for the approval of medicinal cannabis and its distribution to patients in the EU member states is, however, not harmonized at all, and there are distinct national regulations. Regarding the quality of such products, the general requirements for herbal medicinal products as defined in the European Pharmacopoeia, national pharmacopoeias, and the EMA guidance documents in place beside GMP requirements in the EU are applicable. However, for a couple of aspects, every EU member state follows its own interpretation of these requirements. To facilitate free distribution of such products between EU member states in future and to harmonize requirements for quality and GMP, an EU-wide approach is needed. As a first step, this should be realized by implementing monographs for cannabis medicinal products in the European Pharmacopoeia.

4 citations


Journal ArticleDOI
TL;DR: The proteomics experiment showed that NC triggers mitochondrial damage in HCC cells and transcription factor AP-1 (c-Jun) may be a potential target of NC, and induced apoptosis by activating JNK/ c-Jun signaling.
Abstract: The aim of the present study was to investigate the cytotoxic effects and underlying molecular mechanisms of nitidine chloride (NC) in hepatocellular carcinoma cells via quantitative proteomics. MTT assays were used to detect the inhibitory effects of NC in Bel-7402 liver cancer cells, and the number of apoptotic cells was measured by flow cytometry. Quantitative proteomics technology based on iTRAQ was used to discover differential expressed proteins after NC treatment, and bioinformatic techniques were further used to screen potential targets of NC. Molecular docking was applied to evaluate the docking activity of NC with possible upstream proteins, and their expression was detected at the mRNA and protein levels by quantitative reverse transcription PCR and western blotting. NC inhibited the proliferation of Bel-7402 cells after 24 h of treatment and stimulated apoptosis in vitro. The proteomics experiment showed that NC triggers mitochondrial damage in HCC cells and transcription factor AP-1 (c-Jun) may be a potential target of NC (fold change = 4.36 ± 0.23). Molecular docking results revealed the highest docking score of NC with c-Jun N-terminal kinase (JNK), one of the upstream proteins of c-Jun. Moreover, the mRNA and protein expression of c-Jun and JNK were significantly increased after NC treatment (p < 0.05). These findings indicate that NC significantly induced mitochondrial damage in HCC cells, and induced apoptosis by activating JNK/c-Jun signaling.

4 citations


Journal ArticleDOI
TL;DR: It is demonstrated that resveratrol protects BEAS-2B from erastin-induced ferroptosis, and exerts an antioxidant property in erast in-aired cells by activating the nuclear factor-erythroid 2-related factor 2/Kelch-like ECH-associated protein signaling pathway.
Abstract: Abstract Ferroptosis is a newly discovered type of cell death that is different from other types of cell death morphologically and biologically. It is considered to play an important role in many pulmonary diseases. Currently, the regulatory roles of antioxidation in lung epithelial ferroptosis have not been fully explored. In this study, we show that resveratrol protected erastin-induced ferroptosis in BEAS-2B cells. Erastin led to increased reactive oxygen species production and iron deposition in BEAS-2B cells, which could be rescued by resveratrol. Furthermore, we observed that resveratrol led to modulating ferroptosis-associated gene glutathione peroxidase 4 expression and regulating glutathione in BEAS-2B cells. Resveratrol exerted an antioxidant property in erastin-induced ferroptosis of BEAS-2B cells by activating the nuclear factor-erythroid 2-related factor 2/Kelch-like ECH-associated protein signaling pathway. Finally, these findings demonstrate that resveratrol protects BEAS-2B from erastin-induced ferroptosis.

3 citations


Journal ArticleDOI
TL;DR: A comprehensive summary of the recent progress on the research of NDIs, focusing on the main drug transporters, such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic anion transporter 1 and 3 (OAT1/OAT3), polypeptide 1B1 and 1B3, organic cation transporter 2 (OCT2), multidrug and toxin extrusion protein 1 and 2-K (MATE1/MATE2-K), etc. as mentioned in this paper .
Abstract: Abstract The increasing use of natural products in clinical practice has raised great concerns about the potential natural product-drug interactions (NDIs). Drug transporters mediate the transmembrane passage of a broad range of drugs, and thus are important determinants for drug pharmacokinetics and pharmacodynamics. Generally, transporters can be divided into ATP binding cassette (ABC) family and solute carrier (SLC) family. Numerous natural products have been identified as inhibitors, substrates, inducers, and/or activators of drug transporters. This review article aims to provide a comprehensive summary of the recent progress on the research of NDIs, focusing on the main drug transporters, such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic anion transporter 1 and 3 (OAT1/OAT3), organic anion-transporting polypeptide 1B1 and 1B3 (OATP1B1/OATP1B3), organic cation transporter 2 (OCT2), multidrug and toxin extrusion protein 1 and 2-K (MATE1/MATE2-K). Additionally, the challenges and strategies of studying NDIs are also discussed.

3 citations


Journal ArticleDOI
TL;DR: The present study clarified the potential of EESD in the treatment of ALI and revealed its potential pharmacodynamic mechanism by inhibiting the NF-κB/NLRP3 inflammasome pathway and suppressing the pro-inflammatory phenotype activation of lung tissue macrophages.
Abstract: Abstract Acute lung injury (ALI) is one of the representative “lung heat syndromes” in traditional Chinese medicine (TCM). Scutellaria baicalensis is an herbal medicine used in TCM for treating lung diseases, due to its remarkable anti-inflammatory and antiviral effects. When used in TCM, S. baicalensis root is divided into two categories: S. baicalensis pith-not-decayed root (SN) and S. baicalensis pith-decayed root (SD). Compared to SN, SD has a better effect on lung diseases. We constructed a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model to study the pharmacodynamic mechanism of SD. The ethanolic extract of Scutellaria baicalensis pith-decayed root (EESD) significantly affected LPS-induced ALI by reducing alveolar interstitial thickening, pulmonary edema, and other pathological symptoms, decreasing the infiltration of inflammatory cells, especially macrophages, and inhibiting IL-1 β , TNF- α , and IL-6 transcription and translation. Furthermore, in the THP-1 macrophage model induced by LPS, EESD inhibited the expression of phosphorylated nuclear factor inhibitory protein alpha (p-I κ B α ), phosphorylated nuclear factor- κ B P65 (p-p65), cleaved-caspase-1, cleaved-IL-1 β protein, and the release of inflammatory factors in the NF- κ B/NLRP3 pathway, inhibiting macrophage function. In vivo experiments yielded similar results. Therefore, the present study clarified the potential of EESD in the treatment of ALI and revealed its potential pharmacodynamic mechanism by inhibiting the NF- κ B/NLRP3 inflammasome pathway and suppressing the pro-inflammatory phenotype activation of lung tissue macrophages.

3 citations


Journal ArticleDOI
TL;DR: In this paper , a review summarizes the experimental evidence of milk thistle's effects on animals when administered as silymarin extract (feed additive) or a feed ingredient, if administered as seed or expeller/cake with the seed residue still containing the bioactive components.
Abstract: Abstract Milk thistle, Silybum marianum , is a medicinal plant grown for its bioactive compounds with well-documented antioxidant and hepatoprotective properties. Milk thistle has a well-established pharmacological reputation for treatments of human liver disease, but it is also used in animals. This review summarizes the experimental evidence of milk thistleʼs effects on animals when administered as silymarin extract (feed additive) or a feed ingredient, if administered as seed or expeller/cake with the seed residue still containing the bioactive components. The use as a feed additive or feed ingredient is motivated by the complexity of silymarin registration as a veterinary drug. In farm animals, the drug improves the animalsʼ performance and product quality and oxidative stability, supports liver function during the productive life-cycle, improves gut-health and morphology, and can reduce intestinal pathogens. In dogs and cats, the treatment is focused on acute and chronic liver diseases including the detoxification processes and support of drug treatments including chemotherapy. In equine athletes, milk seed cake showed positive effects and a faster return of cortisol to the resting values before exercise occurred. In aquaculture, it confirms its usefulness in supporting animal health and performance. In certain studies it is not clear what has been administered, and the composition and doses are not always clearly reported. A few studies reported no effects, but none reported problems connected to milk thistle administration. However, the overall picture shows that the use of milk thistle results in improved or restored health parameters or better animal performance.

Journal ArticleDOI
TL;DR: In this paper , the effect of BBR and GPX4 on islet β cell viability and proliferation was investigated by evaluating the content of Fe 2+ and reactive oxygen species (ROS) in cells.
Abstract: Abstract Ferroptosis, as a kind of non-apoptotic cell death, is involved in the pathogenesis of type 1 diabetes mellitus (T1DM). Islet B cells mainly produce insulin that is used to treat diabetes. Berberine (BBR) can ameliorate type 2 diabetes and insulin resistance in many ways. However, a few clues concerning the mechanism of BBR regulating ferroptosis of islet β cells in T1DM have been detected so far. We measured the effects of BBR and GPX4 on islet β cell viability and proliferation by MTT and colony formation assays. Western blot and qRT-PCR were utilized to examine GPX4 expression in islet β cells with distinct treatments. The influence of BBR and GPX4 on ferroptosis of islet β cells was investigated by evaluating the content of Fe 2+ and reactive oxygen species (ROS) in cells. The mechanism of BBR targeting GPX4 to inhibit ferroptosis of islet β cells was further revealed by the rescue experiment. Our results showed that BBR and overexpression of GPX4 could notably accelerate cell viability and the proliferative abilities of islet β cells. Moreover, BBR stimulated GPX4 expression to reduce the content of Fe 2+ and ROS, thereby repressing the ferroptosis of islet β cells, which functioned similarly as ferroptosis inhibitor Fer-1. In conclusion, BBR suppressed ferroptosis of islet β cells via promoting GPX4 expression, providing new insights into the mechanism of BBR for islet β cells.

Journal ArticleDOI
TL;DR: In this article , the two types of oregano used by the inhabitants of the villages of Μount Belles (GR1260001), the white and black varieties with white flowers and black ones with purple flowers, were studied.
Abstract: Abstract The two types of oregano used by the inhabitants of the villages of Μount Belles (GR1260001), the “white” oregano with white flowers and “black” oregano with purple flowers, were studied. The two oregano types were collected from five localities along an altitudinal gradient from 217 m up to 1299 m. “White” oregano, was found in the three lowland regions (up to 752 m) where the Pannonian-Balkanic turkey oak-sessile oak forest habitat (code 91M0) dominates. The “black” oregano was collected from the two higher altitudes, at 1177 m and 1299 m, where the Asperulo-Fagetum beech forest habitat (9130) occurs. Measurements of the density and size of peltate glandular hairs (sessile glands) on calyces, bracts, and leaves suggest that “white” oregano is distinguished by its conspicuous – apparently larger – glands. These differences were reflected in the total essential oil content, with the “white” oregano being much richer (up to 4.3 mL/100 g dry weight) than the “black” (up to 0.6%). Striking differences have also been found in the volatile fraction of their essential oil composition. The “white” oregano oils were characterized by the high content of carvacrol (up to 92.6% of identified peaks, by Headspace GC-MS). On the other hand, the two “black” oregano oils have a different aromatic profile, first reported from Greece, with main components including the sesquiterpenes β -caryophyllene, D-germacrene, δ -cadinene and β -bisabolene. The results so far indicate that “white” and “black” oregano, Origanum vulgare subsp. hirtum and subsp. vulgare respectively, can be clearly distinguished either by their morphological (glandular) differences or by chemical (essential oil) composition.

Journal ArticleDOI
TL;DR: In this article , the Paraphaeosphaeria sporulosa F03 strain was extracted and the structures of the 3-methyl-isoquinoline alkaloids (1: - 4: ) and four known polyketides (5: - 8: ) were elucidated by 1D and 2D NMR experiments and HRMS analysis.
Abstract: As part of our continuing efforts to discover new bioactive compounds from endophytic fungal sources, we have investigated the extract of the Paraphaeosphaeria sporulosa F03 strain. The study led to the isolation of four new 3-methyl-isoquinoline alkaloids (1: - 4: ) and four known polyketides (5: - 8: ). The structures of compounds 1: - 4: were elucidated by 1D and 2D NMR experiments and HRMS analysis. The absolute configuration of 4: was determined by comparison of its experimental electronic circular dichroism spectrum with calculated data. Compounds 1: - 4: exhibited antifungal activity with minimal inhibitory concentration values ranging from 6.25 - 50 µg/mL against six Candida species but they did not present any cytotoxic activity against the human tumor cell lines A549 (lung), MCF-7 (breast), and HepG2 (hepatocellular). In addition, compound 4: exhibited antiplasmodial activity in the low micromolar range (IC50 = 4 µM).

Journal ArticleDOI
TL;DR: It is suggested that combination herbal therapy and antibiotics can be effectively used to expand the spectrum of their antimicrobial action and may enable new choices for the treatment of infectious diseases and represents a potential area for future research.
Abstract: Abstract The purpose of this review is to summarize the current knowledge acquired on herbal products and their active constituents with antimicrobial activity used alone and in combination with antibiotics against multidrug-resistant bacteria. The most promising herbal products and active constituents used alone against multidrug-resistant bacteria are Piper betle (methicillin-resistant Staphylococcus aureus , vancomycin-resistant Enterococcus, extended-spectrum beta-lactamase, Acinetobacter baumannii, Pseudomonas aeruginosa ), Glycyrrhiza glabra (methicillin-resistant S. aureus , vancomycin-resistant Enterococcus, P. aeruginosa ), and berberine (methicillin-resistant S. aureus, A. baumannii, P. aeruginosa ), respectively. The synergistic effect of the combination of herbal products and their active constituents with antibiotics against multidrug-resistant bacteria are also described. These natural antibacterial agents can be promising sources of inhibitors, which can modulate antibiotic activity against multidrug-resistant bacteria, especially as efflux pump inhibitors. Other possible mechanisms of action of herbal therapy against multidrug-resistant bacteria including modification of the bacterial cell wall and/or membrane, inhibition of the cell division protein filamenting temperature sensitive Z-ring, and inhibition of protein synthesis and gene expression, all of which will also be discussed. Our review suggests that combination herbal therapy and antibiotics can be effectively used to expand the spectrum of their antimicrobial action. Therefore, combination therapy against multidrug-resistant bacteria may enable new choices for the treatment of infectious diseases and represents a potential area for future research.

Journal ArticleDOI
TL;DR: In this article , the authors investigated the in vitro and in vivo antileishmanial as well as the in vivo immunomodulatory effects of oleocanthal, a molecule that has recently gained increasing scientific attention.
Abstract: Abstract Leishmaniasis is a major tropical disease with increasing global incidence. Due to limited therapeutic options with severe drawbacks, the discovery of alternative treatments based on natural bioactive compounds is important. In our previous studies we have pointed out the antileishmanial activities of olive tree-derived molecules. In this study, we aimed to investigate the in vitro and in vivo antileishmanial as well as the in vivo immunomodulatory effects of oleocanthal, a molecule that has recently gained increasing scientific attention. Pure oleocanthal was isolated from extra virgin olive oil through extraction and chromatography techniques. The in vitro antileishmanial effects of oleocanthal were examined with a resazurin-based assay, while its in vivo efficacy was evaluated in Leishmania major-infected BALB/c mice by determining footpad induration, parasite load in popliteal lymph nodes, histopathological outcome, antibody production, cytokine profile of stimulated splenocytes and immune gene expression, at three weeks after the termination of treatment. Oleocanthal demonstrated in vitro antileishmanial effect against both L. major promastigotes and intracellular amastigotes. This effect was further documented in vivo as demonstrated by the suppressed footpad thickness, the decreased parasite load and the inflammatory cell influx at the infection site. Oleocanthal treatment led to the dominance of a Th1-type immunity linked with resistance against the disease. This study establishes strong scientific evidence for olive tree-derived natural products as possible antileishmanial agents and provides an adding value to the scientific research of oleocanthal.

Journal ArticleDOI
TL;DR: HPLC analytical methods for the determination of GRA and SFN in mustard seed powder, broccoli sprout powder, and the MSP-BSP mixture powder were found to be suitable and exerted anti-adipogenic effects in 3T3-L1 preadipocytes.
Abstract: Abstract Glucoraphanin (GRA) is a precursor of sulforaphane (SFN), which can be synthesized by the enzyme myrosinase. In this study, we developed and validated HPLC analytical methods for the determination of GRA and SFN in mustard seed powder (MSP), broccoli sprout powder (BSP), and the MSP-BSP mixture powder (MBP), and evaluated their anti-adipogenic effects in 3T3-L1 adipocytes. We found that the analysis methods were suitable for the determination of GRA and SFN in MSP, BSP, and MBP. The content of GRA in BSP was 131.11 ± 1.84 µmol/g, and the content of SFN in MBP was 162.29 ± 1.24 µmol/g. In addition, BSP and MBP effectively decreased lipid accumulation content without any cytotoxicity. Both BSP and MBP significantly inhibited the expression of adipogenic proteins and increased the expression of proteins related to lipolysis and lipid metabolism. BSP and MBP inhibited the expression of adipocyte protein 2 (aP2), CCAAT/enhancer-binding protein- α (C/EBP- α ), and peroxisome proliferator-activated receptor- γ (PPAR- γ ) in 3T3-L1 adipocytes, and inhibited the expression of fatty acid synthase (FAS) through AMP-activated protein kinase (AMPK). Meanwhile, BSP and MBP also increased the expression of the lipolysis-related proteins, uncoupling protein-1 (UCP-1) and carnitine palmitoyltransferase-1 (CPT-1). Moreover, MBP exerted anti-adipogenic to a greater extent than BSP in 3T3-L1 preadipocytes.

Journal ArticleDOI
TL;DR: Li et al. as mentioned in this paper investigated the molecular mechanisms of the potential curative effect of Radix arnebiae oil (RAO) on wound healing and found that RAO significantly accelerated wound closure and repair scarring, increased superoxide dismutase activities, and reduced malondialdehyde.
Abstract: Abstract Radix arnebiae oil (RAO) is a clinically useful traditional Chinese medical formula with outstanding curative effects on burns. However, the mechanism of the effect of RAO on wound healing remains unclear. The present study investigates the molecular mechanisms of the potential curative effect of RAO on wound healing. The concentrations of the main constituents, shikonin, imperatorin, and ferulic acid in RAO detected by HPLC were 24.57, 3.15, and 0.13 mg/mL, respectively. A rat burn model was established, and macroscopic and histopathological studies were performed. RAO significantly accelerated wound closure and repair scarring, increased superoxide dismutase activities, and reduced malondialdehyde. RAO also downregulated interleukin (IL)-6, IL-1 β and tumor necrosis factor- α in wound tissues and increased secretion of vascular endothelial growth factor, epidermal growth factor, and transforming growth factor (TGF)- β 1. RAO increased the gene expression of TGF- β 1, type I and III collagen, and increased the protein expression of TGF- β 1 and phosphorylation of PI3K and Akt. In conclusion, RAO likely promotes wound healing via antioxidant and anti-inflammatory activities and increases re-epithelization. Activation of the TGF- β 1/PI3K/Akt pathway may play an important role in the healing efficacy of RAO. These findings suggest that RAO could be a promising alternative local treatment for burn wound healing.

Journal ArticleDOI
TL;DR: This study compound did not affect placental viability or functionality, as glucose consumption, lactate production, and beta-human chorionic gonadotropin, and leptin release remained constant.
Abstract: Abstract The placental passage of protopine was investigated with a human ex vivo placental perfusion model. The model was first validated with diazepam and citalopram, 2 compounds known to cross the placental barrier, and antipyrine as a positive control. All compounds were quantified by partially validated U(H)PLC-MS/MS bioanalytical methods. Protopine was transferred from the maternal to the fetal circuit, with a steady-state reached after 90 min. The study compound did not affect placental viability or functionality, as glucose consumption, lactate production, and beta-human chorionic gonadotropin, and leptin release remained constant. Histopathological evaluation of all placental specimens showed unremarkable, age-appropriate parenchymal maturation with no pathologic findings.

Journal ArticleDOI
TL;DR: In this article , a phytochemical study has been carried out on CH2Cl2 extract of Alphonsea cylindrica leaves, resulting in the isolation of three new morphinan alkaloids.
Abstract: A phytochemical study has been carried out on CH2Cl2 extract of Alphonsea cylindrica leaves, resulting in the isolation of three new morphinan alkaloids. They are kinomenine (1: ), N-methylkinomenine (2: ), and hydroxymethylkinomenine (3: ). The structures of these compounds were elucidated by extensive spectroscopic analysis (1D and 2D NMR, IR, UV, HRESIMS) and comparison with the data reported in literature for similar alkaloids. Kinomenine (1: ) and N-methylkinomenine (2: ) showed weak inhibition against S. aureus (MIC values of 1: and 2: = 500 µg/mL; pIC50 values in 95% C. I. of: 1: = 2.9 to 3.0; 2: = 2.9 to 3.1), while kinomenine (1: ) also showed weak inhibition against E. coli (MIC values of 1: = 500 µg/mL; pIC50 value in 95% C. I. of: 1: = 2.9) by broth microdilution method. The results obtained can be used as future referencefor the discovery of morphinans and the potential of A. cylindrica as an antibacterial source.

Journal ArticleDOI
TL;DR: In this article , the phytochemical investigation of U.S. minor samaras EtOAc and n-BuOH extracts is reported in this work for the first time, resulting in the isolation and characterization of twenty compounds (1 - 20) including one new flavan-3-ol (1), one new trihydroxy fatty acid (2), and two glycosylated flavonoids (6 - 7) whose NMR data are not available in the literature.
Abstract: Abstract The phytochemical investigation of Ulmus minor subsp. minor samaras EtOAc and n-BuOH extracts is reported in this work for the first time, resulting in the isolation and characterization of twenty compounds (1 – 20) including one new flavan-3-ol (1), one new trihydroxy fatty acid (2), and two glycosylated flavonoids (6 – 7) whose NMR data are not available in the literature. Structure elucidation of the isolated compounds was obtained by 1D and 2D NMR and HRESIMS data. Prior to further pharmacological investigations, the extracts (100 – 6.25 µg/mL) and compounds 1 – 12 (50 – 5 µM) were tested for their influence on viability of a murine macrophage cell line (J774A.1). Subsequently, extracts and compounds that did not impede viability, were studied for their inhibitory effect on some mediators of inflammation in J774A.1 cells stimulated with lipopolysaccharide of Escherichia coli (LPS). The NO release and the expression of iNOS and COX-2 were then evaluated and both extracts (50 – 6.25 µg/mL) and compounds (20 – 5 µM) significantly inhibited NO release as well as iNOS and COX-2 expression in macrophages. These data highlight the anti-inflammatory properties of several isolated compounds from U. minor samaras supporting their possible alimentary use.

Journal ArticleDOI
TL;DR: The potential of cannabinoids, primarily tetrahydrocannabinol, THCVS, and cannabinol, as drug candidates and the role of CB1/CB2 receptors with regard to the pathophysiology of glaucoma are analyzed.
Abstract: Glaucoma is a blinding eye disease that affects about 70 million patients globally today. The cannabinoid receptors and the endocannabinoid system have found attention for new drug concepts. This review will analyze the potential of cannabinoids, primarily tetrahydrocannabinol, THCVS, and cannabinol, as drug candidates and the role of CB1/CB2 receptors with regard to the pathophysiology of glaucoma. The mode of action of cannabinoids as innovative drug candidates and recent formulations for topical delivery will be discussed. Cannabinoid receptors with associated TRPV channels will be evaluated for their potential as drug targets. Especially the role of the endocannabinoid system (fatty acid amide hydrolase, monoacylglycerol lipase) impacting the prostaglandin network (cyclooxygenase, PGE, PGF) and neuroprotection by inhibition of nitric oxide radical formation is in the focus of this review. Delivery systems, including recent clinical trials, will be analyzed to evaluate the potential for innovative future ophthalmological drugs.

Journal ArticleDOI
TL;DR: The main metabolic pathways after the oral administration of A. pilosa extract were revealed to include methylation, dihydroxylation, demethylation, hydrolysis, sulfation, and glucuronidation.
Abstract: Agrimonia pilosa is a perennial herbaceous flowering plant, commonly known as agrimony or hairy agrimony. The dried aerial parts of this species have been widely used for the treatment of acute diarrhea, hemostasis, and other inflammation-related diseases. However, information on the in vivo metabolism of A. pilosa constituents is limited. In this study, the phytochemical profile of A. pilosa was investigated using HPLC-Q-TOF-MS/MS combined with a nontargeted diagnostic ion network analysis strategy. An information-dependent acquisition method with multiple filters was utilized to screen possible prototypes and metabolites in complex biological matrices. Furthermore, various data-processing techniques were applied to analyze possible prototypes and their metabolites in rat plasma, feces, and urine following oral administration of A. pilosa extract. A total of 62 compounds, which belonged to five main structural classes (21 phenols, 22 flavonoids, 6 coumarins, 3 triterpenes, and 10 organic acids), were tentatively identified in A. pilosa. In addition, using our proposed stepwise method, 32 prototypes and 69 metabolites were detected in rat plasma, feces, and urine. The main metabolic pathways after the oral administration of A. pilosa extract were revealed to include methylation, dihydroxylation, demethylation, hydrolysis, sulfation, and glucuronidation. This comprehensive in vivo and in vitro identification of the possible active components in A. pilosa could provide a basis for understanding its various pharmacological activities.

Journal ArticleDOI
TL;DR: The results support the potential adaptogen-like effects of curcumin attenuating key features of SE-induced brain damage and reduce the number of seizures in the surviving rats.
Abstract: Abstract Numerous preclinical studies provide evidence that curcumin, a polyphenolic phytochemical extracted from Curcuma longa (turmeric) has neuroprotective, anti-inflammatory and antioxidant properties against various neurological disorders. Curcumin neuroprotective effects have been reported in different animal models of epilepsy, but its potential effect attenuating brain glucose hypometabolism, considered as an early marker of epileptogenesis that occurs during the silent period following status epilepticus (SE), still has not been addressed. To this end, we used the lithium-pilocarpine rat model to induce SE. Curcumin was administered orally (300 mg/kg/day, for 17 days). Brain glucose metabolism was evaluated in vivo by 2-deoxy-2-[ 18 F]Fluoro-D-Glucose ([ 18 F]FDG) positron emission tomography (PET). In addition, hippocampal integrity, neurodegeneration, microglia-mediated neuroinflammation, and reactive astrogliosis were evaluated as markers of brain damage. SE resulted in brain glucose hypometabolism accompanied by body weight (BW) loss, hippocampal neuronal damage, and neuroinflammation. Curcumin did not reduce the latency time to the SE onset, nor the mortality rate associated with SE. Nevertheless, it reduced the number of seizures, and in the surviving rats, curcumin protected BW and attenuated the short-term glucose brain hypometabolism as well as the signs of neuronal damage and neuroinflammation induced by the SE. Overall, our results support the potential adaptogen-like effects of curcumin attenuating key features of SE-induced brain damage.

Journal ArticleDOI
TL;DR: Bisindole 2: is a microtubule-stabilizing agent which is predicted to bind at the β-tubulin subunit at the taxol-binding site, which resulted in the generation of ROS, which consequently activated the oxidative stress-related cell cycle arrest and apoptotic pathways, viz., JNK/p38, p21Cip1/Chk1, and p21Rb/E2F, as shown by microarray profiling.
Abstract: Two iboga-vobasine bisindoles, 16'-decarbomethoxyvoacamine (1: ) and its 19,20-dihydro derivative, 16'-decarbomethoxydihydrovoacamine (2: ) from Tabernaemontana corymbosa exhibited potent cytotoxicity against the human colorectal adenocarcinoma HT-29 cells in our previous studies. Bisindoles 1: and 2: selectively inhibited the growth of HT-29 cells without significant cytotoxicity to normal human colon fibroblasts CCD-18Co. Treatment with bisindoles 1: and 2: suppressed the formation of HT-29 colonies via G0/G1 cell cycle arrest and induction of mitochondrial apoptosis. Owing to its higher antiproliferative activity, bisindole 2: was chosen for the subsequent studies. Bisindole 2: inhibited the formation of HT-29 spheroids (tumor-like cell aggregates) in 3D experiments in a dose-dependent manner, while an in vitro tubulin polymerization assay and molecular docking analysis showed that bisindole 2: is a microtubule-stabilizing agent which is predicted to bind at the β-tubulin subunit at the taxol-binding site. The binding resulted in the generation of ROS, which consequently activated the oxidative stress-related cell cycle arrest and apoptotic pathways, viz., JNK/p38, p21Cip1/Chk1, and p21Cip1/Rb/E2F, as shown by microarray profiling.

Journal ArticleDOI
TL;DR: It was demonstrated that an aqueous extract of a quercetin-rich onion cultivar increased transactivation activities not only of PPAR-α but also of PPar-γ, and it was revealed that pinellic acid could transactivate PPAR -α.
Abstract: Quercetin, a flavonol, is a functional compound that is abundant in onions and is known to have antioxidant and anti-inflammatory effects. Quercetin and its glucoside are known to function as peroxisome proliferator-activated receptor (PPAR) ligands and showed high PPAR-α transactivation activity but little PPAR-γ transactivation activity in some reports. In this study, we demonstrated that an aqueous extract of a quercetin-rich onion cultivar increased transactivation activities not only of PPAR-α but also of PPAR-γ. We isolated (9S,12S,13S)-(10E)-9,12,13-trihydroxyoctadec-10-enoic acid (pinellic acid) obtained from the aqueous extract using PPAR-γ transactivation as an index. Furthermore, it was revealed that pinellic acid could transactivate PPAR-α. Our findings are the first report mentioned showing that trihydroxyoctadec-10-enoic acids showed PPAR-α/γ transactivation activities.

Journal ArticleDOI
TL;DR: In this paper , the in vitro antimicrobial activity of 11 essential oils against Pasteurella multocida isolated from the respiratory tract of calves using microdilution with determination of minimum inhibitory and bactericidal concentration as well as agar disc diffusion.
Abstract: Administration of essential oils as natural plant products with antimicrobial activity might be an alternative to antibiotic treatment of bovine respiratory disease. The aim of this study was to analyse the in vitro antimicrobial activity of 11 essential oils against Pasteurella multocida isolated from the respiratory tract of calves using microdilution with determination of minimum inhibitory and bactericidal concentration as well as agar disc diffusion. Additionally, antimicrobial activity against Mannheimia haemolytica and bacteria in the Mannheimia clade was assessed by agar disc diffusion. Seven essential oil mixtures were also tested against all bacterial isolates. P. multocida was strongly inhibited by cinnamon cassia and lemongrass oil followed by coriander, winter savory, thyme, clove, and peppermint oil in the microdilution assays. Eucalyptus, wintergreen, spruce, and star anise oil showed lower activity. Comparison of both methods revealed an underestimation of cinnamon cassia oil activity by agar disc diffusion and conflicting results for wintergreen oil in microdilution, which precipitated in broth. Cinnamon cassia, thyme, wintergreen, lemongrass, and winter savory oil all showed strong antimicrobial activity against M. haemolytica . Bacteria in the Mannheimia clade were mostly inhibited by cinnamon cassia and thyme oil. Pasteurella isolates were more susceptible to inhibition by essential oils than Mannheimia isolates. Essential oil mixtures did not show stronger antibacterial activity than single essential oils. In conclusion, cinnamon cassia and lemongrass as well as coriander, winter savory, and thyme oil are promising candidates for treatment of P. multocida -associated bovine respiratory infections.

Journal ArticleDOI
TL;DR: The protozoan Trypanosoma cruzi (T. cruzi) causes Chagas disease, a neglected tropical disease, which aggravates between 6 and 7 million patients' life in global as discussed by the authors .
Abstract: The protozoan Trypanosoma cruzi (T. cruzi) causes Chagas disease, a neglected tropical disease, which aggravates between 6 and 7 million patientsʼ life in global. Mostly it is spreaded via vectoral infection of Triatominae bugs [1].

Journal ArticleDOI
TL;DR: In this paper , the effects of acertannin on colitis induced by dextran sulfate sodium (DSS) and changes in the colonic levels of the cytokines interleukin (IL)-1 β , IL-6, IL-10, IL23, tumor necrosis factor (TNF)- α , the chemokine monocyte chemoattractant protein (MCP)-1, and vascular endothelial growth factor (VEGF) were investigated.
Abstract: Abstract The present study investigates the effects of acertannin on colitis induced by dextran sulfate sodium (DSS) and changes in the colonic levels of the cytokines interleukin (IL)-1 β , IL-6, IL-10, IL-23, tumor necrosis factor (TNF)- α , the chemokine monocyte chemoattractant protein (MCP)-1, and vascular endothelial growth factor (VEGF). We examine the following: inflammatory colitis was induced in mice by 2% DSS drinking water given ad libitum for 7 days. Red blood cell, platelets, and leukocyte counts and hematocrit (Ht), hemoglobin (Hb), and colonic cytokine and chemokine levels were measured. The disease activity index (DAI) was lower in DSS-treated mice orally administered acertannin (30 and 100 mg/kg) than in DSS-treated mice. Acertannin (100 mg/kg) inhibited reductions in the red blood cell count and Hb and Ht levels in DSS-treated mice. Acertannin prevented DDS-induced mucosal membrane ulceration of the colon and significantly inhibited the increased colonic levels of IL-23 and TNF- α . Our findings suggest that acertannin has potential as a treatment for inflammatory bowel disease (IBD).

Journal ArticleDOI
TL;DR: In this article , the main α-glucosidase inhibitors in avocado seed were identified through bioassay-guided isolation of the main amino acid inhibitors, including oligomeric proanthocyanidin complex (ASOPC).
Abstract: Abstract Although considered an abundant source of agricultural by-products, avocado ( Persea americana Mill.) seed, with several biological activities and bioactive components, might become a promising resource for phytopharmaceutical development. In this study, through bioassay-guided isolation of the main α -glucosidase inhibitors in avocado seed, we discovered the major α -glucosidase inhibitor to be avocado seed oligomeric proanthocyanidin complex (ASOPC). Thiolysis and UPLC-DAD-HRESIMS showed the presence of A- and B-type procyanidins, and B-type propelargonidin with (epi)afzelechin as extension unit. Mean degree of polymerization (mDP) of ASOPC was calculated as 7.3 ± 1. Furthermore, ASOPC appeared to be a strong, reversible, competitive inhibitor of α -glucosidase, with IC 50 value of 0.1 µg/mL, which was significantly lower than Acarbose (IC 50 = 75.6 µg/mL), indicated that ASOPC is a potential natural α -glucosidase inhibitor. These findings would contribute to the direction of utilizing avocado seed bioactive components with the possibility to be used as natural anti-diabetic agents.