scispace - formally typeset
Search or ask a question

Showing papers in "Reproductive and developmental Biology in 2023"


Journal ArticleDOI
TL;DR: In this article , the antioxidant and antidiabetic properties of the essential oil from cinnamon (Cinnamomum zeylanicum) leaves were evaluated and investigated using various bioanalytical methods.
Abstract: In this study, for the first time, the antioxidant and antidiabetic properties of the essential oil from cinnamon (Cinnamomum zeylanicum) leaves were evaluated and investigated using various bioanalytical methods. In addition, the inhibitory effects of cinnamon oil on carbonic anhydrase II (hCA II), acetylcholinesterase (AChE), and α-amylase, which are associated with various metabolic diseases, were determined. Further, the phenolic contents of the essential oil were determined using LC-HRMS chromatography. Twenty-seven phenolic molecules were detected in cinnamon oil. Moreover, the amount and chemical profile of the essential oils present in cinnamon oil was determined using GC/MS and GC-FID analyses. (E)-cinnamaldehyde (72.98%), benzyl benzoate (4.01%), and trans-Cinnamyl acetate (3.36%) were the most common essential oils in cinnamon leaf oil. The radical scavenging activities of cinnamon oil were investigated using 1,1-diphenyl-2-picryl-hydrazil (DPPH•), 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), and (ABTS•+) bioanalytical scavenging methods, which revealed its strong radical scavenging abilities (DPPH•, IC50: 4.78 μg/mL; and ABTS•+, IC50: 5.21 μg/mL). Similarly, the reducing capacities for iron (Fe3+), copper (Cu2+), and Fe3+-2,4,6-tri(2-pyridyl)-S-triazine (TPTZ) were investigated. Cinnamon oil also exhibited highly effective inhibition against hCA II (IC50: 243.24 μg/mL), AChE (IC50: 16.03 μg/mL), and α-amylase (IC50: 7.54μg/mL). This multidisciplinary study will be useful and pave the way for further studies for the determination of antioxidant properties and enzyme inhibition profiles of medically and industrially important plants and their oils.

13 citations


Journal ArticleDOI
TL;DR: In this paper , the authors explored the contribution of melatonin against salinity stress and provided information regarding which biochemical mechanism can be effective and utilized for the development of salt-tolerant germplasm in Zizyphus.
Abstract: Fruit orchards are frequently irrigated with brackish water. Irrigation with poor quality water is also a major cause of salt accumulation in soil. An excess of salts results in stunted growth, poor yield, inferior quality and low nutritional properties. Melatonin is a low molecular weight protein that shows multifunctional, regulatory and pleiotropic behavior in the plant kingdom. Recently, its discovery brought a great revolution in sustainable fruit production under salinity-induced environments. Melatonin contributed to enhanced tolerance in Zizyphus fruit species by improving the plant defense system’s potential to cope with the adverse effects of salinity. The supplemental application of melatonin has improved the generation of antioxidant assays and osmolytes involved in the scavenging of toxic ROS. The tolerance level of the germplasm is chiefly based on the activation of the defense system against the adverse effects of salinity. The current study explored the contribution of melatonin against salinity stress and provides information regarding which biochemical mechanism can be effective and utilized for the development of salt-tolerant germplasm in Zizyphus.

8 citations


Journal ArticleDOI
TL;DR: In this article , the antioxidant capacities of P. granatum juice, ethanol (EEZP), and water (WEZP) extracts from peel and seed were evaluated, and the antioxidant methods of 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid radical (ABTS•+) scavenging, 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH•) scavenging was found to be lower than standards.
Abstract: Zivzik pomegranate (Punica granatum) has recently sparked considerable interest due to its nutritional and antioxidant properties. To evaluate the antioxidant capacities of P. granatum juice, ethanol (EEZP), and water (WEZP) extracts from peel and seed, the antioxidant methods of 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid radical (ABTS•+) scavenging, 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH•) scavenging, Fe3+-2,4,6-tris(2-pyridyl)-S-triazine (TPTZ) reducing, Fe3+ reducing, and Cu2+ reducing methods were used. The antioxidant capacities of samples were compared with the most commonly used synthetic antioxidants, i.e., BHA, BHT, α-tocopherol, and Trolox. In terms of setting an example, the IC50 values of EEZP for ABTS•+ and DPPH• scavenging activities were found to be lower than standards, at 5.9 and 16.1 μg/mL, respectively. The phenolic and flavonoid contents in EEZP peel were 59.7 mg GAE/g and 88.0 mg QE/g, respectively. Inhibition of α-glycosidase, α-amylase, acetylcholinesterase, and human carbonic anhydrase II (hCA II) enzymes was also investigated. EEZP demonstrated IC50 values of 7.3 μg/mL against α-glycosidase, 317.7 μg/mL against α-amylase, 19.7 μg/mL against acetylcholinesterase (AChE), and 106.3 μg/mL against CA II enzymes. A total of 53 phenolic compounds were scanned, and 30 compounds were determined using LC-MS/MS. E. coli and S. aureus bacteria were resistant to all four antibiotics used as standards in hospitals.

7 citations


Journal ArticleDOI
TL;DR: In this paper , the phytochemical composition, manufacturing processes, and health-improving attributes of many varieties of grape seed oil derived using various extraction methods are examined, including lipophilic fatty acids, tocopherols, and phytosterols.
Abstract: Seeds’ abundant biologically active compounds make them a suitable primary platform for the production of natural extracts, innovative foods, medicines, and cosmetics. High levels of industrial and agricultural residues and byproducts are generated during the processing of grapes, although some parts can also be repurposed. This paper examines the phytochemical composition, manufacturing processes, and health-improving attributes of many varieties of grape oil derived using various extraction methods. Since the results are influenced by a range of factors, they are expressed differently among studies, and the researchers employ a variety of measuring units, making it difficult to convey the results. The primary topics covered in most papers are grape seed oil’s lipophilic fatty acids, tocopherols, and phytosterols. In addition, new methods for extracting grape seed oil should therefore be designed; these methods must be affordable, energy-efficient, and environmentally friendly in order to increase the oil’s quality by extracting bioactive components and thereby increasing its biological activity in order to become part of the overall management of multiple diseases.

6 citations


Journal ArticleDOI
TL;DR: In this paper , the authors investigated the role of snow metrics in the spread of sarcoptic mange in the wild boar population in Aosta Valley in the Northwest of Italy, including sympatric species as foxes.
Abstract: The widespread diffusion of the wild boar on the Italian territory and its consistent use for hunting have created the possibility to conduct multiple studies on the pathologies afflicting this ungulate. Nevertheless, in the last two decades, only some pathologies such as classical and African Swine Fever, Tuberculosis, Brucellosis from Brucella suis have benefited from substantial public funding and the consequent great interest from the scientific world, while less attention was addressed to parasitic diseases including sarcoptic mange. Therefore, to fill this gap, the purpose of this study was to contribute to the knowledge of sarcoptic mange in the wild boar population in Aosta Valley in the Northwest of Italy, including sympatric species as foxes. Due to past field surveys, it has been possible to find a possible role of snow metrics in the spread of this pathogen. Even if there are only empirical evidence and the mechanism remain unknown remote sensing analysis considering snow metrics were performed to provide to veterinarians, foresters, biologists, and ecologists new tools to better understand wield board dynamics and join to ordinary tool an instrument to enhance management and planning strategies. The snow metrics (SM) were derived from USGS NASA Landsat 8 L2A retrieved from Theia CNES platform and processed in Orfeo Toolbox LIS extension package. The relationship between SM and the disease spread was tested per each Aosta Valley municipality obtaining LISA maps for each hunting season. The results have showed that this parasite is present in an endemic form even if with rather low prevalence values, equal to 1.2% in the season hunting season 2013/2014, and equal to 7.5% in the hunting season 2014/2015. Moreover, within simultaneous given values of SM, sarcoptic mange seem to find good conditions for spreading.

6 citations


Journal ArticleDOI
TL;DR: In this paper , the influence of biological agents such as plant growth-promoting rhizobacteria (PGPRs) coupled with proper plant nutrition can improve the agricultural importance of different plant species.
Abstract: Extreme environmental conditions, such as abiotic stresses (drought, salinity, heat, chilling and intense light), offer great opportunities to study how different microorganisms and plant nutrition can influence plant growth and development. The intervention of biological agents such as plant growth-promoting rhizobacteria (PGPRs) coupled with proper plant nutrition can improve the agricultural importance of different plant species. Brassicaceae (Cruciferae) belongs to the monophyletic taxon and consists of around 338 genera and 3709 species worldwide. Brassicaceae is composed of several important species of economical, ornamental and food crops (vegetables, cooking oils, forage, condiments and industrial species). Sustainable production of Brassicas plants has been compromised over the years due to several abiotic stresses and the unbalanced utilization of chemical fertilizers and uncertified chemicals that ultimately affect the environment and human health. This chapter summarized the influence of PGPRs and nutrient management in the Brassicaceae family against abiotic stresses. The use of PGPRs contributed to combating climate-induced change/abiotic factors such as drought, soil and water salinization and heavy metal contamination that limits the general performance of plants. Brassica is widely utilized as an oil and vegetable crop and is harshly affected by abiotic stresses. Therefore, the use of PGPRs along with proper mineral nutrients management is a possible strategy to cope with abiotic stresses by improving biochemical, physiological and growth attributes and the production of brassica in an eco-friendly environment.

6 citations


Journal ArticleDOI
TL;DR: In this article , the ethyl acetate fraction (EF) was isolated from Padina boergesenii brown seaweed and used as a bio-filter in the formulation of sunscreen, and physical properties and stability were investigated.
Abstract: Brown seaweeds, due to their wide range of bioactive compounds, have a high ability to inhibit free radicals and protect against ultraviolet rays. In the present study, the ethyl acetate fraction (EF) was isolated from the Padina boergesenii brown seaweed. Antioxidant activity (by the DPPH scavenging activity method) and cytotoxicity against UVB-induced cytotoxicity in HaCaT human keratinocytes were evaluated. Then, this fraction was used as a bio-filter in the formulation of sunscreen, and the physical properties and stability were investigated. The results showed that the EF could inhibit DPPH radical scavenging (54 ± 1%) and cell viability of HaCaT keratinocytes exposed to UVB irradiation (81.2 ± 0.1%). The results of the stability study of the cream formulated with EF showed that at temperatures 4 °C and 25 °C it has high stability; and at 40 °C on the 28th day, a slight decrease in its stability was observed. The pH and Sun Protection Factor of the cream formulated with EF were reported at 5.8 and 20.55, respectively. Also, the DPPH scavenging activity of the cream was not altered for 28 days of storage at temperatures of 4–40 °C. According to our results, it was proved that the sunscreen formulated with EF of P. boergesenii brown seaweed has promising properties and characteristics that can create a new opportunity for the development of cosmetics and skin care products.

6 citations


Journal ArticleDOI
TL;DR: Jin et al. as discussed by the authors showed that the COVID-19 primary protease bound to organoselenium ligands with high binding energy scores ranging from −8.19 to −7.33 Kc/mol for 4c and 4a to −6.10 to − 6.20 Kcal/m for 6b and 6a.
Abstract: Simple Summary The coronavirus was declared a worldwide pandemic for the first time in December 2019. Although vaccination reduces the risk of severe illness and death, no vaccine is 100% foolproof. Recently, the COVID-19 primary protease has become a promising therapeutic target. During the preceding three years, many low molecular weight chemical libraries were tested for their potent antiviral potency against SARS-CoV-2. Many studies focused on organoselenium compounds due to their potential antiviral activities. Herein, new organoselenium-based Schiff bases were successfully synthesized and evaluated for their potential to inhibit the SARS-CoV-2 Mpro main protease, which is essential for virus replication. Abstract Since the first report of the organoselenium compound, ebselen, as a potent inhibitor of the SARS-CoV-2 Mpro main protease by Z. Jin et al. (Nature, 2020), different OSe analogs have been developed and evaluated for their anti-COVID-19 activities. Herein, organoselenium-clubbed Schiff bases were synthesized in good yields (up to 87%) and characterized using different spectroscopic techniques. Their geometries were studied by DFT using the B3LYP/6–311 (d, p) approach. Ten FDA-approved drugs targeting COVID-19 were used as model pharmacophores to interpret the binding requirements of COVID-19 inhibitors. The antiviral efficiency of the novel organoselenium compounds was assessed by molecular docking against the 6LU7 protein to investigate their possible interactions. Our results showed that the COVID-19 primary protease bound to organoselenium ligands with high binding energy scores ranging from −8.19 to −7.33 Kcal/mol for 4c and 4a to −6.10 to −6.20 Kcal/mol for 6b and 6a. Furthermore, the docking data showed that 4c and 4a are good Mpro inhibitors. Moreover, the drug-likeness studies, including Lipinski’s rule and ADMET properties, were also assessed. Interestingly, the organoselenium candidates manifested solid pharmacokinetic qualities in the ADMET studies. Overall, the results demonstrated that the organoselenium-based Schiff bases might serve as possible drugs for the COVID-19 epidemic.

6 citations


Journal ArticleDOI
TL;DR: In this paper , the authors used FTIR and fluorescence spectroscopy to study the effect of moxifloxacin and rifampicin in micelles.
Abstract: Polymeric micelles combining the advantages of biocompatible poly- and oligosaccharides with classical micellar amphiphilic systems represent a promising class of drug carriers. In this work, micelles based on chitosan (or cyclodextrin) and oleic acid with various modification degrees were synthesized—the most optimal grafting degree is 15–30% in terms of CMC. According to NTA data, micelles have a hydrodynamic diameter of the main fraction of 60–100 nm. The inclusion of the antibacterial agents: moxifloxacin or rifampicin in micelles was studied by FTIR spectroscopy and fluorescence spectroscopy using a pyrene label (using monomer-excimer approach). When aromatic molecules are incorporated into micelles, the absorption bands of C-H bonds of the fatty tails of micelles shift towards smaller wavenumbers, indicating a stabilization of the micelles structure, and the microenvironment of the drug molecule changes according to the low frequencies shift and intensity changes in oscillation frequencies of 1450 cm−1 corresponding to aromatic fragment. Loading of moxifloxacin and rifampicin into micelles leads to a change in the fluorescent properties: a shift of the maximum of fluorescence emission to the long-wavelength region and an increase in the fluorescence anisotropy due to a drastic increase in the hydrodynamic volume of the fluorophore-containing rotating fragment. Using the pyrene label, the critical micelle concentrations were determined: from 4 to 30 nM depending on the polymer composition. Micellar systems enhance the effect of the antibiotic by increasing the penetration into bacterial cells and storing the drug in a protective coat. As a part of the supramolecular structure, the antibiotic remains active for more than four days, while in free form, the activity decreases after two days. In pharmacokinetic experiments, in vivo moxifloxacin in micellar systems show 1.7 times more efficiency compared to free form; moreover, two times higher maximal concentration in the blood is achieved. The advantage of polymer micellar systems in comparison with simple cyclodextrins and chitosan, which do not so significantly contribute to the antibacterial and pharmacokinetic parameters, was shown. Thus, polymeric micelles are one of the key approaches to improving the effectiveness of antibacterial drugs and solving the problems of resistant bacterial infections and multidrug resistance.

6 citations


Journal ArticleDOI
TL;DR: The role of biofilm formation in recurrent urinary tract infections is discussed in this article , where the authors outline the mechanisms underlying the formation of biofilms in different uropathogens and shed light on some biofilm eradication strategies.
Abstract: Urinary tract infections (UTIs) represent one of the most common infections that are frequently encountered in health care facilities. One of the main mechanisms used by bacteria that allows them to survive hostile environments is biofilm formation. Biofilms are closed bacterial communities that offer protection and safe hiding, allowing bacteria to evade host defenses and hide from the reach of antibiotics. Inside biofilm communities, bacteria show an increased rate of horizontal gene transfer and exchange of resistance and virulence genes. Additionally, bacterial communication within the biofilm allows them to orchestrate the expression of virulence genes, which further cements the infestation and increases the invasiveness of the infection. These facts stress the necessity of continuously updating our information and understanding of the etiology, pathogenesis, and eradication methods of this growing public health concern. This review seeks to understand the role of biofilm formation in recurrent urinary tact infections by outlining the mechanisms underlying biofilm formation in different uropathogens, in addition to shedding light on some biofilm eradication strategies.

6 citations


Journal ArticleDOI
TL;DR: According to the evidence, the most common infections in the clinic include herpes simplex virus, human papillomavirus, Candida albicans, Aspergillus, Actinomycosis, and Streptococcus mutans as mentioned in this paper .
Abstract: Undoubtedly, diagnosing and managing infections is one of the most challenging issues for orofacial clinicians. As a result of the diversity of symptoms, complicated behavior, and sometimes confusing nature of these conditions, it has become increasingly difficult to diagnose and treat them. It also highlights the need to gain a deeper insight into the orofacial microbiome as we try to improve our understanding of it. In addition to changes in patients’ lifestyles, such as changes in diet, smoking habits, sexual practices, immunosuppressive conditions, and occupational exposures, there have been changes in patients’ lifestyles that complicate the issue. Recent years have seen the development of new infection treatments due to the increased knowledge about the biology and physiology of infections. This review aimed to provide a comprehensive overview of the types of infections in the mouth, including the types that viruses, fungi, or bacteria may cause. It is important to note that we searched the published literature in the Scopus, Medline, Google Scholar, and Cochran databases from 2010 to 2021 using the following keywords: “Orofacial/Oral Infections,” “Viral/Fungal/Bacterial Infections”, “Oral Microbiota” And “Oral Microflora” without limiting our search to languages and study designs. According to the evidence, the most common infections in the clinic include herpes simplex virus, human papillomavirus, Candida albicans, Aspergillus, Actinomycosis, and Streptococcus mutans. The purpose of this study is to review the new findings on characteristics, epidemiology, risk factors, clinical manifestations, diagnosis, and new treatment for these types of infectious diseases.

Journal ArticleDOI
TL;DR: In this paper , the authors explored the reliability of the most commonly used countermovement jump (CMJ) metrics, and reduced a large pool of metrics with acceptable levels of reliability via principal component analysis to the significant factors capable of providing distinctive aspects of CMJ performance.
Abstract: The purpose of the present study was (i) to explore the reliability of the most commonly used countermovement jump (CMJ) metrics, and (ii) to reduce a large pool of metrics with acceptable levels of reliability via principal component analysis to the significant factors capable of providing distinctive aspects of CMJ performance. Seventy-nine physically active participants (thirty-seven females and forty-two males) performed three maximal CMJs while standing on a force platform. Each participant visited the laboratory on two occasions, separated by 24–48 h. The most reliable variables were performance variables (CV = 4.2–11.1%), followed by kinetic variables (CV = 1.6–93.4%), and finally kinematic variables (CV = 1.9–37.4%). From the 45 CMJ computed metrics, only 24 demonstrated acceptable levels of reliability (CV ≤ 10%). These variables were included in the principal component analysis and loaded a total of four factors, explaining 91% of the CMJ variance: performance component (variables responsible for overall jump performance), eccentric component (variables related to the breaking phase), concentric component (variables related to the upward phase), and jump strategy component (variables influencing the jumping style). Overall, the findings revealed important implications for sports scientists and practitioners regarding the CMJ-derived metrics that should be considered to gain a comprehensive insight into the biomechanical parameters related to CMJ performance.

Journal ArticleDOI
TL;DR: In this paper , the authors discuss the integration of all available strategies and provide comprehensive knowledge about chickpea plant defense against Fusarium wilt, which is a major fungal disease caused by fusarium oxysporum f. sp. ciceris (FOC).
Abstract: Chickpea is an important leguminous crop with potential to provide dietary proteins to both humans and animals. It also ameliorates soil nitrogen through biological nitrogen fixation. The crop is affected by an array of biotic and abiotic factors. Among different biotic stresses, a major fungal disease called Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceris (FOC), is responsible for low productivity in chickpea. To date, eight pathogenic races of FOC (race 0, 1A, and 1B/C, 2-6) have been reported worldwide. The development of resistant cultivars using different conventional breeding methods is very time consuming and depends upon the environment. Modern technologies can improve conventional methods to solve these major constraints. Understanding the molecular response of chickpea to Fusarium wilt can help to provide effective management strategies. The identification of molecular markers closely linked to genes/QTLs has provided great potential for chickpea improvement programs. Moreover, omics approaches, including transcriptomics, metabolomics, and proteomics give scientists a vast viewpoint of functional genomics. In this review, we will discuss the integration of all available strategies and provide comprehensive knowledge about chickpea plant defense against Fusarium wilt.

Journal ArticleDOI
TL;DR: In this article , the physicochemical and pharmacokinetic properties of wheat germ oil (WGO) were evaluated for the top 12 constituents with the common target FABP4.
Abstract: Wheat germ oil (WGO) is the richest source of unexplored antioxidants and anti-inflammatory compounds. In this study, we identified the constituents of WGO by gas chromatography–mass spectrometry (GC-MS). The physicochemical and pharmacokinetic behaviors were evaluated for the top 12 constituents with the common target FABP4. Three fatty acids with significant anti-inflammatory activity were evaluated for their interaction with FABP4 by molecular docking. The molecular mechanisms involved in anti-inflammatory responses were analyzed by various in-silico analytical tools and multidimensional data analysis. WGO showed anti-inflammatory activities via FABP4 interacting physically with target genes (77.84%) and by co-expressing with 8.01% genes. Primary targets for inflammatory pathways were PPARα, PPARγ, LPL, LEP, and ADIPOQ, as depicted by gene network enrichment analysis. The key pathways implicated were the metabolism of lipids, PPAR signaling, cellular response to alcohol, oxygen and nitrogen pathway, inflammatory response pathway, and regulation of the inflammatory pathway. The common transcription factors implicated were HNF1, AP2α, CEBP, FOX, STATS, MYC, Zic, etc. In this study, we found that WGO possesses anti-inflammatory potential via FABP4 binding to PPARα, PPARγ, LPL, LEP, and ADIPOQ gene expression by regulatory transcription factors HNF, AP2α, and CEPB.

Journal ArticleDOI
TL;DR: In this paper , the authors investigated a range of functional foods, often marketed as immune system boosters, in an attempt to find indications of their potential protective role against diseases caused by viruses, such as the influenza viruses (A and B), herpes simplex virus (HSV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in some cases mediated by gut microbiota.
Abstract: A complex network of processes inside the human immune system provides resistance against a wide range of pathologies. These defenses form an innate and adaptive immunity, in which certain immune components work together to counteract infections. In addition to inherited variables, the susceptibility to diseases may be influenced by factors such as lifestyle choices and aging, as well as environmental determinants. It has been shown that certain dietary chemical components regulate signal transduction and cell morphologies which, in turn, have consequences on pathophysiology. The consumption of some functional foods may increase immune cell activity, defending us against a number of diseases, including those caused by viruses. Here, we investigate a range of functional foods, often marketed as immune system boosters, in an attempt to find indications of their potential protective role against diseases caused by viruses, such as the influenza viruses (A and B), herpes simplex virus (HSV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in some cases mediated by gut microbiota. We also discuss the molecular mechanisms that govern the protective effects of some functional foods and their molecular constituents. The main message of this review is that discovering foods that are able to strengthen the immune system can be a winning weapon against viral diseases. In addition, understanding how the dietary components function can aid in the development of novel strategies for maintaining human bodily health and keeping our immune systems strong.

Journal ArticleDOI
TL;DR: In this article , a review summarizes the impact that both cesarean section and natural birth have on mother and newborn in their attempt to adapt to postpartum events and extrauterine life.
Abstract: Birth is a physiological act that is part of the morpho-functional economy of the maternal body. Each stage in the act of birth has a predetermined pathway that is neurohormonally induced and morpho-functionally established through specific and characteristic adaptations. Like maternity, childbirth also has an important impact on the maternal body as a biological structure and psycho-emotional behavior. Cesarean section performed at the request of the mother with no medical underlying conditions besides the prolonged hospitalization risk can also cause breathing problems in children, delayed breastfeeding, and possible complications in a future pregnancy. Vaginal birth remains the path of choice for a physiological evolution pregnancy. Although erroneously considered safe and easy today, cesarean section delivery must remain an emergency procedure or a procedure recommended for pregnancies where birth is a risk to the mother and to the child, as cesarean section itself is a risk factor for negative outcomes for both mother and baby. This review summarizes the impact that both cesarean section and natural birth have on mother and newborn in their attempt to adapt to postpartum events and extrauterine life.

Journal ArticleDOI
TL;DR: In the wake of the emergence and worldwide respread of a viral infection called Monkeypox (Mpox), there is a serious threat to the health and safety of the global population as mentioned in this paper .
Abstract: In the wake of the emergence and worldwide respread of a viral infection called Monkeypox (Mpox), there is a serious threat to the health and safety of the global population. This viral infection was endemic to the western and central parts of Africa, but has recently spread out of this endemic area to various countries, including the United Kingdom (UK), Portugal, Spain, the United States of America (USA), Canada, Sweden, Belgium, Italy, Australia, Germany, France, the Netherlands, Israel, and Mexico. This is a timely review focusing on recent findings and developments in the epidemiology, clinical features, therapeutic targets, diagnosis, prevention mechanisms, research challenges and possible treatment for Mpox. To date (29 November 2022), there have been around 81,225 reported cases of Mpox. In most cases, this illness is mild; however, there is a fatality rate ranging from 1 to 10%, which might be increased due to associated complications and/or secondary infections. There is a real challenge in the diagnosis of Mpox, since its symptoms are very similar to those of other infections, including smallpox and chickenpox. Generally, to prevent/limit the risk and transmission of Mpox, the detection and isolation of infected individuals, as well as hand hygiene and cleanliness, are essential and effective approaches to control/combat this viral infection. Nevertheless, updated information about Mpox from different angles is lacking. Thus, this review provides updated and comprehensive information about the Mpox illness, which should highlight the global burden, pathogenicity, symptoms, diagnosis, prevention measures and possible treatment of this emerging disease.

Journal ArticleDOI
TL;DR: There are a remarkable number of wound-healing botanicals that have been widely used in the Northern Hemisphere, including Achiella millefolium, Aloe vera, Althaea officinalis, Calendula officinalises, Matricaria chamomilla, Curcuma longa, Eucalyptus, Jojoba, plantain, pine, green tea, pomegranate, and Inula as discussed by the authors .
Abstract: The skin serves as the body’s first line of defense, guarding against mechanical, chemical, and thermal damage to the interior organs. It includes a highly developed immune response that serves as a barrier against pathogenic infections. Wound healing is a dynamic process underpinned by numerous cellular activities, including homeostasis, inflammation, proliferation, and remodeling, that require proper harmonious integration to effectively repair the damaged tissue. Following cutaneous damage, microorganisms can quickly enter the tissues beneath the skin, which can result in chronic wounds and fatal infections. Natural phytomedicines that possess considerable pharmacological properties have been widely and effectively employed forwound treatment and infection prevention. Since ancient times, phytotherapy has been able to efficiently treat cutaneous wounds, reduce the onset of infections, and minimize the usage of antibiotics that cause critical antibiotic resistance. There are a remarkable number of wound-healing botanicals that have been widely used in the Northern Hemisphere, including Achiella millefolium, Aloe vera, Althaea officinalis, Calendula officinalis, Matricaria chamomilla, Curcuma longa, Eucalyptus, Jojoba, plantain, pine, green tea, pomegranate, and Inula. This review addresses the most often used medicinal plants from the Northern Hemisphere that facilitate the treatment of wounds, and also suggests viable natural alternatives that can be used in the field of wound care.

Journal ArticleDOI
TL;DR: In this paper , the authors summarize the perspectives of each field on molecular communications, highlight potential synergies, discuss ongoing challenges to exploit these synergies and present future perspectives for interdisciplinary efforts in this area.
Abstract: Within many chemical and biological systems, both synthetic and natural, communication via chemical messengers is widely viewed as a key feature. Often known as molecular communication, such communication has been a concern in the fields of synthetic biologists, nanotechnologists, communications engineers, and philosophers of science. However, interactions between these fields are currently limited. Nevertheless, the fact that the same basic phenomenon is studied by all of these fields raises the question of whether there are unexploited interdisciplinary synergies. In this paper, we summarize the perspectives of each field on molecular communications, highlight potential synergies, discuss ongoing challenges to exploit these synergies, and present future perspectives for interdisciplinary efforts in this area.

Journal ArticleDOI
TL;DR: In this paper , a systematic review summarizes the evidence of three dietary patterns, the Mediterranean diet, the ketogenic diet and the MIND diet, for the prevention of cognitive decline.
Abstract: (1) Background: Compelling evidence shows that dietary patterns can slow the rate of cognitive decline, suggesting diet is a promising preventive measure against dementia. (2) Objective: This systematic review summarizes the evidence of three dietary patterns, the Mediterranean diet, the ketogenic diet and the MIND diet, for the prevention of cognitive decline. (3) Methods: A systematic search was conducted in major electronic databases (PubMed, ScienceDirect and Web of Science) up until 31 January 2022, using the key search terms "Mediterranean diet", "ketogenic diet", "MIND diet", "dementia", "cognition" and "aging". A statistical analysis was performed using RoB 2 and the Jadad scale to assess the risk of bias and methodological quality in randomized controlled trials. (4) Results: Only RCTs were included in this study; there were eleven studies (n = 2609 participants) of the Mediterranean diet, seven studies (n = 313) of the ketogenic diet and one study (n = 37) of the MIND diet. The participants' cognitive statuses were normal in seven studies, ten studies included patients with mild cognitive impairments and two studies included Alzheimer's disease patients. (5) Conclusion: All three dietary interventions have been shown to slow the rate of cognitive decline in the included studies. The Mediterranean diet was shown to be beneficial for global cognition after 10 weeks of adherence, the ketogenic diet had a beneficial effect for patients with diabetes mellitus and improved verbal recognition, while the MIND diet showed benefits in obese patients, improving working memory, verbal recognition, memory and attention.

Journal ArticleDOI
TL;DR: In this paper , a review spotlights taxonomic classification, clinical presentations during infection, and the pathogenicity of the monkeypox virus in humans and also highlights different diagnostics used for virus detection.
Abstract: Monkeypox virus is a double-stranded DNA virus species that causes disease in humans and mammals. It is a zoonotic virus belongs the genus Orthopoxviral, the family of Poxviridae, associated with the smallpox virus in many aspects. The first human case of monkeypox was reported throughout the Democratic Republic of Congo in 1970. In April 2022, several cases were recorded in widespread regions of Africa, the Northern and western hemispheres. The current review spotlights taxonomic classification, clinical presentations during infection, and the pathogenicity of the monkeypox virus in humans. Furthermore, the current review also highlights different diagnostics used for virus detection.

Journal ArticleDOI
TL;DR: In this paper , the authors compared postural control between individuals with fibromyalgia syndrome and asymptomatic individuals, and evaluated whether pain intensity mediates the association between kinesiophobia and postural controlling in individuals with FM.
Abstract: Background: Individuals with fibromyalgia syndrome (FM) usually present with a fear of movement (kinesiophobia), which causes their symptoms to be maintained and exacerbated. Kinesiophobia can significantly impact postural control; ascertaining their association is crucial in evaluating and managing individuals with FM. This study aims to (1) compare postural control between individuals with FM and asymptomatic individuals, (2) estimate the relationship between kinesiophobia and postural control in individuals with FM, and (3) evaluate whether pain intensity mediates the association between kinesiophobia and postural control in individuals with FM. Methods: This study enrolled 92 individuals (mean age: 51.52 ± 7.7 years) diagnosed with FM and 106 asymptomatic individuals (mean age: 50.47 ± 6.6 years). The examiners estimated the fear of movement and the intensity of pain utilizing the Tampa scale of kinesiophobia (TSK) scores and the visual analogue scale (VAS), respectively. The postural control variables included anteroposterior (A-P) sway in mm, medio-lateral (M-L) sway in mm, and ellipse area in mm2. Results: The individuals with FM had impaired postural control compared to the asymptomatic individuals (p < 0.001). Kinesiophobia exhibited mild-to-moderate correlations with the postural control variables (nondominant side: A-P sway: r = 0.48, M-L sway: r = 0.49, ellipse area: r = 0.43. Dominant side: A-P sway: r = 0.41, M-L sway: r = 0.33, ellipse area: r = 0.44). The pain intensity significantly mediated the relationship between kinesiophobia and postural control (p < 0.001). Conclusion: Kinesiophobia showed a significant positive relationship with postural control. The individuals with FM with higher TSK scores had decreased postural control. Pain intensity mediated the relationship between kinesiophobia and postural control. These factors must be considered when evaluating and formulating treatment strategies for people with FM.

Journal ArticleDOI
TL;DR: Zhang et al. as mentioned in this paper proposed that irreversible Piezo2 channelopathy of this proprioceptive terminal degeneration induces constantly activated and dysregulated transcription process in ALS, providing access to underlying pathogenic gene variants and letting the cell-type-specific noncoding DNA mutations become more apparent.
Abstract: Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative multisystem disease, with an unknown pathomechanism, resulting in progressive motoneuron loss. In 90–95% of cases, ALS is sporadic, but close to 10% of ALS is familial with inherited gene mutations from family members. Recently, a non-contact dying-back injury mechanism theory of ALS postulated that irreversible intrafusal proprioceptive terminal degeneration induces the non-resolving progressive impairment of the proprioceptive circuitry, leading to motoneuron loss, progressive overloading and depletion of the central nervous system, and eventually to death. The current manuscript proposes that irreversible Piezo2 channelopathy of this proprioceptive terminal degeneration induces constantly activated and dysregulated transcription process in ALS, providing access to underlying pathogenic gene variants and letting the cell-type-specific noncoding DNA mutations become more apparent. This opinion piece proposes that ALS genes are associated with the Piezo2 channelopathy mechanism both downstream and upstream, and their mutations, along with the aging process, could explain the non-contact dying-back injury mechanism theory of ALS. Moreover, irreversible microinjury of the Piezo2 ion channel could be the primary damage or the root cause of death in ALS. Finally, the current manuscript also depicts the pathomechanism as to why ALS is considered a painless disease.

Journal ArticleDOI
TL;DR: In this article , the authors evaluated the impact of different catering wastes on BSF prepupae immunity and found that catering waste positively influences the H. illucens immune system.
Abstract: The black soldier fly (BSF), Hermetia illucens L. (Diptera: Stratiomyidae), has a great bioconversion potential and ability to develop on diverse substrates. Although the use of catering waste and food by-products containing meat and fish would reduce the footprint of the insect sector, to date, in Europe, their use is still facing legal obstacles for insects as food and feed. Since a major request from the EU insect sector is to diversify the spectrum of allowed substrates, and considering that variations in diet composition could influence insect immune responses, we evaluated the impact of different catering wastes on BSF prepupae immunity. Insects were reared on five diets: one based on feed for laying hens and four based on catering waste containing (i) fruits and vegetables; (ii) fruits, vegetables and bread; (iii) fruit, vegetables, bread and dairy products; (iv) fruits, vegetables, bread, meat and fish. The gene expression of two antimicrobial peptides (AMPs), one defensin and one cecropin, was assessed. Moreover, the hemolymph inhibitory activity against Escherichia coli DH5α and Micrococcus yunnanensis HI55 was evaluated using diffusion assays in solid media. The up-regulation of both AMPs’ encoding genes was observed in insects fed a bread-added and dairy product-added diet. All hemolymph samples showed inhibitory activity against both bacteria, affecting the colony size and number. The obtained results show how catering waste positively influences the H. illucens immune system. The possibility of modulating AMP expression levels through the diet opens up new perspectives in the management of insect health in mass rearings.

Journal ArticleDOI
TL;DR: In this paper , a literature review aims to summarize the available evidence on the therapeutic potential of gut microbiota and its metabolite SCFAs in neonatal necrotizing enterocolitis (NEC), an acute inflammatory necrosis of the distal small intestine/colon affecting premature newborns.
Abstract: Short chain fatty acids (SCFAs), the principle end-products produced by the anaerobic gut microbial fermentation of complex carbohydrates (CHO) in the colon perform beneficial roles in metabolic health. Butyrate, acetate and propionate are the main SCFA metabolites, which maintain gut homeostasis and host immune responses, enhance gut barrier integrity and reduce gut inflammation via a range of epigenetic modifications in DNA/histone methylation underlying these effects. The infant gut microbiota composition is characterized by higher abundances of SCFA-producing bacteria. A large number of in vitro/vivo studies have demonstrated the therapeutic implications of SCFA-producing bacteria in infant inflammatory diseases, such as obesity and asthma, but the application of gut microbiota and its metabolite SCFAs to necrotizing enterocolitis (NEC), an acute inflammatory necrosis of the distal small intestine/colon affecting premature newborns, is scarce. Indeed, the beneficial health effects attributed to SCFAs and SCFA-producing bacteria in neonatal NEC are still to be understood. Thus, this literature review aims to summarize the available evidence on the therapeutic potential of gut microbiota and its metabolite SCFAs in neonatal NEC using the PubMed/MEDLINE database.

Journal ArticleDOI
TL;DR: The current status in the development of liposome-based systems for the targeted delivery of phthalocyanines for photodynamic therapy (PDT) is described in this paper .
Abstract: This updated review aims to describe the current status in the development of liposome-based systems for the targeted delivery of phthalocyanines for photodynamic therapy (PDT). Although a number of other drug delivery systems (DDS) can be found in the literature and have been studied for phthalocyanines or similar photosensitizers (PSs), liposomes are by far the closest to clinical practice. PDT itself finds application not only in the selective destruction of tumour tissues or the treatment of microbial infections, but above all in aesthetic medicine. From the point of view of administration, some PSs can advantageously be delivered through the skin, but for phthalocyanines, systemic administration is more suitable. However, systemic administration places higher demands on advanced DDS, active tissue targeting and reduction of side effects. This review focuses on the already described liposomal DDS for phthalocyanines, but also describes examples of DDS used for structurally related PSs, which can be assumed to be applicable to phthalocyanines as well.

Journal ArticleDOI
TL;DR: In this paper , the authors have discussed the importance of plant metabolites in the context of their medicinal applications and elaborated on their mechanism of antimicrobial action against human pathogens, including bacteria, fungi, and viruses.
Abstract: Simple Summary Many microorganisms develop resistance to drugs through different mechanisms, and this process is called antimicrobial resistance. It is highly essential to discover new antimicrobials to kill pathogenic microbes that have developed antimicrobial resistance. Natural sources, including plants, have been serving as a great source of medicinally important compounds for the past several decades. In this article, we have discussed the antimicrobial properties of plant-derived compounds against drug-resistant human pathogens, including bacteria, fungi, and viruses. Abstract Plants have been used for therapeutic purposes against various human ailments for several centuries. Plant-derived natural compounds have been implemented in clinics against microbial diseases. Unfortunately, the emergence of antimicrobial resistance has significantly reduced the efficacy of existing standard antimicrobials. The World Health Organization (WHO) has declared antimicrobial resistance as one of the top 10 global public health threats facing humanity. Therefore, it is the need of the hour to discover new antimicrobial agents against drug-resistant pathogens. In the present article, we have discussed the importance of plant metabolites in the context of their medicinal applications and elaborated on their mechanism of antimicrobial action against human pathogens. The WHO has categorized some drug-resistant bacteria and fungi as critical and high priority based on the need to develope new drugs, and we have considered the plant metabolites that target these bacteria and fungi. We have also emphasized the role of phytochemicals that target deadly viruses such as COVID-19, Ebola, and dengue. Additionally, we have also elaborated on the synergetic effect of plant-derived compounds with standard antimicrobials against clinically important microbes. Overall, this article provides an overview of the importance of considering phytogenous compounds in the development of antimicrobial compounds as therapeutic agents against drug-resistant microbes.

Journal ArticleDOI
TL;DR: In this paper , the potential of Nisin Z, an antimicrobial peptide (AMP), as an alternative treatment for severe diabetic foot ulcers (DFU) was evaluated.
Abstract: Diabetes mellitus (DM) patients frequently develop diabetic foot ulcers (DFU) which are generally infected by a community of microorganisms, mainly Staphylococcus aureus and Pseudomonas aeruginosa. These bacteria exhibit a multi-drug resistance profile and biofilm-forming ability which represent a hurdle in the treatment of diabetic foot infections (DFI). We aimed to evaluate the potential of Nisin Z, an antimicrobial peptide (AMP), as an alternative treatment for severe DFI. Nisin Z shows antibacterial activity against Gram-positive and Gram-negative bacteria and an increased antibacterial effect against Gram-negatives when added to EDTA. As such, Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Minimum Biofilm Inhibitory Concentration (MBIC), and Minimum Biofilm Eradication Concentration (MBEC) were determined for Nisin Z, Nisin Z + EDTA (0.4%), and Nisin Z + EDTA incorporated into guar gum, in order to test its efficacy against S. aureus and P. aeruginosa isolated from the same DFU. Results showed that Nisin Z added to the chelation agent EDTA displayed higher antibacterial and bacteriostatic efficacy against mono and dual co-cultures of S. aureus and P. aeruginosa, and higher antibiofilm efficiency against monocultures. Nisin Z was moderately cytotoxic at 200 µg/mL. Prospect in vivo studies are needed to confirm the potential of Nisin Z supplemented with EDTA to be used as a complement to conventional antibiotic therapy for severe DFI.

Journal ArticleDOI
TL;DR: In this article , a machine-learning-based approach was designed to analyze the transcriptome of 577 COVID-19 patient samples, including 84 patients with a decreased ability to taste or smell and 493 patients without impairment.
Abstract: The coronavirus disease 2019 (COVID-19), as a severe respiratory disease, affects many parts of the body, and approximately 20–85% of patients exhibit functional impairment of the senses of smell and taste, some of whom even experience the permanent loss of these senses. These symptoms are not life-threatening but severely affect patients’ quality of life and increase the risk of depression and anxiety. The pathological mechanisms of these symptoms have not been fully identified. In the current study, we aimed to identify the important biomarkers at the expression level associated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-mediated loss of taste or olfactory ability, and we have suggested the potential pathogenetic mechanisms of COVID-19 complications. We designed a machine-learning-based approach to analyze the transcriptome of 577 COVID-19 patient samples, including 84 COVID-19 samples with a decreased ability to taste or smell and 493 COVID-19 samples without impairment. Each sample was represented by 58,929 gene expression levels. The features were analyzed and sorted by three feature selection methods (least absolute shrinkage and selection operator, light gradient boosting machine, and Monte Carlo feature selection). The optimal feature sets were obtained through incremental feature selection using two classification algorithms: decision tree (DT) and random forest (RF). The top genes identified by these multiple methods (H3-5, NUDT5, and AOC1) are involved in olfactory and gustatory impairments. Meanwhile, a high-performance RF classifier was developed in this study, and three sets of quantitative rules that describe the impairment of olfactory and gustatory functions were obtained based on the optimal DT classifiers. In summary, this study provides a new computation analysis and suggests the latent biomarkers (genes and rules) for predicting olfactory and gustatory impairment caused by COVID-19 complications.

Journal ArticleDOI
TL;DR: In this paper , the role of silver nanoparticles in cancer nanomedicine is discussed, discussing numerous mechanisms by which they render anticancer properties under both in vitro and in vivo conditions, as well as their potential in the diagnosis of cancer.
Abstract: Cancer is a fatal disease with a complex pathophysiology. Lack of specificity and cytotoxicity, as well as the multidrug resistance of traditional cancer chemotherapy, are the most common limitations that often cause treatment failure. Thus, in recent years, significant efforts have concentrated on the development of a modernistic field called nano-oncology, which provides the possibility of using nanoparticles (NPs) with the aim to detect, target, and treat cancer diseases. In comparison with conventional anticancer strategies, NPs provide a targeted approach, preventing undesirable side effects. What is more, nanoparticle-based drug delivery systems have shown good pharmacokinetics and precise targeting, as well as reduced multidrug resistance. It has been documented that, in cancer cells, NPs promote reactive oxygen species (ROS) production, induce cell cycle arrest and apoptosis, activate ER (endoplasmic reticulum) stress, modulate various signaling pathways, etc. Furthermore, their ability to inhibit tumor growth in vivo has also been documented. In this paper, we have reviewed the role of silver NPs (AgNPs) in cancer nanomedicine, discussing numerous mechanisms by which they render anticancer properties under both in vitro and in vivo conditions, as well as their potential in the diagnosis of cancer.