scispace - formally typeset
Search or ask a question
JournalISSN: 0038-0644

Software - Practice and Experience 

Wiley-Blackwell
About: Software - Practice and Experience is an academic journal published by Wiley-Blackwell. The journal publishes majorly in the area(s): Compiler & Software. It has an ISSN identifier of 0038-0644. Over the lifetime, 7421 publications have been published receiving 150386 citations. The journal is also known as: SP & E & Software.


Papers
More filters
Journal ArticleDOI
TL;DR: A modification of the spring‐embedder model of Eades for drawing undirected graphs with straight edges is presented, developed in analogy to forces in natural systems, for a simple, elegant, conceptually‐intuitive, and efficient algorithm.
Abstract: SUMMARY We present a modification of the spring-embedder model of Eades [ Congresses Numerantium, 42, 149–160, (1984)] for drawing undirected graphs with straight edges. Our heuristic strives for uniform edge lengths, and we develop it in analogy to forces in natural systems, for a simple, elegant, conceptuallyintuitive, and efficient algorithm.

5,242 citations

Journal ArticleDOI
TL;DR: The result of this case study proves that the federated Cloud computing model significantly improves the application QoS requirements under fluctuating resource and service demand patterns.
Abstract: Cloud computing is a recent advancement wherein IT infrastructure and applications are provided as ‘services’ to end-users under a usage-based payment model. It can leverage virtualized services even on the fly based on requirements (workload patterns and QoS) varying with time. The application services hosted under Cloud computing model have complex provisioning, composition, configuration, and deployment requirements. Evaluating the performance of Cloud provisioning policies, application workload models, and resources performance models in a repeatable manner under varying system and user configurations and requirements is difficult to achieve. To overcome this challenge, we propose CloudSim: an extensible simulation toolkit that enables modeling and simulation of Cloud computing systems and application provisioning environments. The CloudSim toolkit supports both system and behavior modeling of Cloud system components such as data centers, virtual machines (VMs) and resource provisioning policies. It implements generic application provisioning techniques that can be extended with ease and limited effort. Currently, it supports modeling and simulation of Cloud computing environments consisting of both single and inter-networked clouds (federation of clouds). Moreover, it exposes custom interfaces for implementing policies and provisioning techniques for allocation of VMs under inter-networked Cloud computing scenarios. Several researchers from organizations, such as HP Labs in U.S.A., are using CloudSim in their investigation on Cloud resource provisioning and energy-efficient management of data center resources. The usefulness of CloudSim is demonstrated by a case study involving dynamic provisioning of application services in the hybrid federated clouds environment. The result of this case study proves that the federated Cloud computing model significantly improves the application QoS requirements under fluctuating resource and service demand patterns. Copyright © 2010 John Wiley & Sons, Ltd.

4,570 citations

Journal ArticleDOI
TL;DR: A package of practical tools and libraries for manipulating graphs and their drawings that includes stream and event interfaces for graph operations, high-quality static and dynamic layout algorithms, and the ability to handle sizable graphs is described.
Abstract: SUMMARY We describe a package of practical tools and libraries for manipulating graphs and their drawings. Our design, which aimed at facilitating the combination of the package components with other tools, includes stream and event interfaces for graph operations, high-quality static and dynamic layout algorithms, and the ability to handle sizable graphs. We conclude with a description of the applications of this package to a variety of software engineering tools. Copyright c 1999 John Wiley & Sons, Ltd.

1,237 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose a simulator, called iFogSim, to model IoT and fog environments and measure the impact of resource management techniques in latency, network congestion, energy consumption, and cost.
Abstract: Summary Internet of Things (IoT) aims to bring every object (eg, smart cameras, wearable, environmental sensors, home appliances, and vehicles) online, hence generating massive volume of data that can overwhelm storage systems and data analytics applications. Cloud computing offers services at the infrastructure level that can scale to IoT storage and processing requirements. However, there are applications such as health monitoring and emergency response that require low latency, and delay that is caused by transferring data to the cloud and then back to the application can seriously impact their performances. To overcome this limitation, Fog computing paradigm has been proposed, where cloud services are extended to the edge of the network to decrease the latency and network congestion. To realize the full potential of Fog and IoT paradigms for real-time analytics, several challenges need to be addressed. The first and most critical problem is designing resource management techniques that determine which modules of analytics applications are pushed to each edge device to minimize the latency and maximize the throughput. To this end, we need an evaluation platform that enables the quantification of performance of resource management policies on an IoT or Fog computing infrastructure in a repeatable manner. In this paper we propose a simulator, called iFogSim, to model IoT and Fog environments and measure the impact of resource management techniques in latency, network congestion, energy consumption, and cost. We describe two case studies to demonstrate modeling of an IoT environment and comparison of resource management policies. Moreover, scalability of the simulation toolkit of RAM consumption and execution time is verified under different circumstances.

1,085 citations

Journal ArticleDOI
TL;DR: Basic version control concepts are introduced and the practice of version control using RCS is discussed, and usage statistics show that RCS's delta method is space and time efficient.
Abstract: An important problem in program development and maintenance is version con- trol, i.e., the task of keeping a software system consisting of many versions and configurations well organized. The Revision Control System (RCS) is a software tool that assists with that task. RCS manages revisions of text documents, in particular source programs, documentation, and test data. It automates the storing, retrieval, log- ging and identification of revisions, and it provides selection mechanisms for composing configurations. This paper introduces basic version control concepts and discusses the practice of version control using RCS. For conserving space, RCS stores deltas, i.e., differences between successive revisions. Several delta storage methods are discussed. Usage statistics show that RCS's delta storage method is space and time efficient. The paper concludes with a detailed survey of version control tools.

1,026 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202347
2022110
2021172
2020116
201980
2018104