scispace - formally typeset
Search or ask a question
JournalISSN: 0040-6015

Thermal Engineering 

Springer Science+Business Media
About: Thermal Engineering is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Thermal power station & Boiler (power generation). It has an ISSN identifier of 0040-6015. Over the lifetime, 3077 publications have been published receiving 10094 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The need for using environmentally friendly energy carriers for mobile heat power plants (HPPs) is grounded as discussed by the authors, and the authors investigated the use of environmentally friendly sources of energy such as natural gas as well as renewable methyl and ethyl alcohols.
Abstract: The need for using environmentally friendly energy carriers for mobile heat power plants (HPPs) is grounded. Ecologically friendly sources of energy, such as natural gas as well as renewable methyl and ethyl alcohols, are investigated. In order to develop, determine, and optimize the composition of environmentally friendly energy carriers for an HPP, the latter has been tested when working on diesel fuel (DF), compressed natural gas (CNG), and methanol and ethanol fuel emulsions (MFE, EFE). It has been experimentally established that, for the application of environmentally friendly energy carriers for a 4Ch 11.0/12.5 diesel engine of a mobile fuel and power plant, it is necessary to maintain the following ratio of components when working on CNG: 80% gas and 20% DF primer portion. When working on an alcohol mixture, emulsions of the following composition were used: 25% alcohol (methanol or ethanol), 0.5% detergent-dispersant additive succinimide C-5A, 7% water, and 67.5% DF. When this diesel passed from oil DF to environmentally friendly energy sources, it allowed for the reduction of the content of exhaust gases (EG) (1) when working on CNG with recirculation of exhaust gases (EGR) (recirculation was used to eliminate the increased amount of nitric oxides by using CNG): carbon black by 5.8 times, carbon dioxide by 45.9%, and carbon monoxide by 23.8%; (2) when working on MFE: carbon black by 6.4 times, nitrogen oxides by 29.6%, carbon dioxide by 10.1%, and carbon oxide by 47.6%; (3) when working on EFE: carbon black by 4.8 times; nitrogen oxides by 40.3%, carbon dioxide by 26.6%, and carbon monoxide by 28.6%. The prospects of use of environmentally friendly energy carriers in diesels of mobile HPPs, such as natural gas, ethanol, and methanol, has been determined.

105 citations

Journal ArticleDOI
TL;DR: In this article, the main problems associated with investigation of these processes were identified and the promising directions for the development of modern notions on the organic coal-water fuel (OCWF) ignition processes were determined.
Abstract: The study results of ignition of organic coal-water fuel (OCWF) compositions were considered. The main problems associated with investigation of these processes were identified. Historical perspectives of the development of coal-water composite fuel technologies in Russia and worldwide are presented. The advantages of the OCWF use as a power-plant fuel in comparison with the common coal-water fuels (CWF) were emphasized. The factors (component ratio, grinding degree of solid (coal) component, limiting temperature of oxidizer, properties of liquid and solid components, procedure and time of suspension preparation, etc.) affecting inertia and stability of the ignition processes of suspensions based on the products of coaland oil processing (coals of various types and metamorphism degree, filter cakes, waste motor, transformer, and turbine oils, water-oil emulsions, fuel-oil, etc.) were analyzed. The promising directions for the development of modern notions on the OCWF ignition processes were determined. The main reasons limiting active application of the OCWF in power generation were identified. Characteristics of ignition and combustion of coal-water and organic coal-water slurry fuels were compared. The effect of water in the composite coal fuels on the energy characteristics of their ignition and combustion, as well as ecological features of these processes, were elucidated. The current problems associated with pulverization of composite coal fuels in power plants, as well as the effect of characteristics of the pulverization process on the combustion parameters of fuel, were considered. The problems hindering the development of models of ignition and combustion of OCWF were analyzed. It was established that the main one was the lack of reliable experimental data on the processes of heating, evaporation, ignition, and combustion of OCWF droplets. It was concluded that the use of high-speed video recording systems and low-inertia sensors of temperature and gas concentration could help in providing the lacking experimental information.

86 citations

Journal ArticleDOI
TL;DR: In this paper, the problem of utilizing coal-water fuel in power engineering is analyzed, and prospective fields of its application are determined, and the potential applications of coal water fuel are discussed.
Abstract: The problem of utilizing coal-water fuel in power engineering is analyzed, and prospective fields of its application are determined.

79 citations

Journal ArticleDOI
TL;DR: In this paper, an experimental study of evacuated tubes coupled solar still in the climatic conditions of Mehsana, a region of North Gujarat, India during summer and winter climate conditions has been made.
Abstract: Experimental study of evacuated tubes coupled solar still in the climatic conditions of Mehsana, a region of North Gujarat, India during summer and winter climate conditions has been made. Experimental setup was made by authors. Fourteen double-walled hard borosilicate glass tubes have been used. Evacuated tubes were inclined at angle of 45° from horizontal. Outer tubes of evacuated tubes were transparent, inner tubes were coated with a selective coating of Al-Ni/Al compound for better solar radiation absorption and minimum emittance. It has been shown that evacuated tube attachments to the solar still increased the water temperature inside the solar still for increment in the generation of distillate output. Evacuated tubes coupled solar still is not only produce distilled water during sunshine hours, but also off-sunshine hours due to heat storage effect. For the validation of the experimental results, a theoretical model is proposed based on the fundamentals of heat and mass transfer equations for solar still glass cover, water in basin and basin bottom. Two main statistical parameters—root mean square error and mean bias error—were calculated to compare the results of experiments and theoretical analysis. Closed matching of the experimental and theoretical results has been found.

50 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023111
2022216
202184
2020114
2019102
2018125