Audio encryption and decryption algorithm in image format for secured communication
01 Nov 2017-
...read more
References
More filters
[...]
TL;DR: This work explores both traditional and novel techniques for addressing the data-hiding process and evaluates these techniques in light of three applications: copyright protection, tamper-proofing, and augmentation data embedding.
Abstract: Data hiding, a form of steganography, embeds data into digital media for the purpose of identification, annotation, and copyright. Several constraints affect this process: the quantity of data to be hidden, the need for invariance of these data under conditions where a "host" signal is subject to distortions, e.g., lossy compression, and the degree to which the data must be immune to interception, modification, or removal by a third party. We explore both traditional and novel techniques for addressing the data-hiding process and evaluate these techniques in light of three applications: copyright protection, tamper-proofing, and augmentation data embedding.
2,947 citations
[...]
TL;DR: This work explores both traditional and novel techniques for addressing the data hiding process and evaluates these techniques in light of three applications: copyright protecting, tamper-proofing, and augmentation data embedding.
Abstract: Data hiding is the process of embedding data into image and audio signals. The process is constrained by the quantity of data, the need for invariance of the data under conditions where the `host' signal is subject to distortions, e.g., compression, and the degree to which the data must be immune to interception, modification, or removal. We explore both traditional and novel techniques for addressing the data hiding process and evaluate these techniques in light of three applications: copyright protecting, tamper-proofing, and augmentation data embedding.
1,343 citations
[...]
TL;DR: An algorithm for robust extraction of bits from image blocks and a method for synthesizing a Gaussian pseudo-random sequence from those bits that changes continuously with the image block yet depends sensitively on the secret key are described.
Abstract: We describe an algorithm for robust extraction of bits from image blocks and a method for synthesizing a Gaussian pseudo-random sequence from those bits. The bits are extracted by thresholding projections onto random smooth patterns generated from a user-specified key. The extracted bits are further utilized to synthesize a Gaussian pseudo-random sequence that changes continuously with the image block yet depends sensitively on the secret key. The proposed technique is quite general and can be combined with the majority of oblivious watermarking schemes that generate watermarks from pseudo-random sequences. We anticipate that this algorithm will find applications in many oblivious watermarking schemes including secure data embedding into videos and watermarking images for tamper detection.
132 citations
"Audio encryption and decryption alg..." refers methods in this paper
[...]
[...]
TL;DR: In this article, JPEG-LS and JPEG-2000 were evaluated on a set of CT images from multiple anatomical regions, modalities, and vendors, and the results showed that the proposed scheme outperformed existing JPEG (3.04 with optimum predictor choice per image, 2.79 for previous pixel prediction as most commonly used in DICOM).
Abstract: Proprietary compression schemes have a cost and risk associated with their support, end of life and interoperability. Standards reduce this cost and risk. The new JPEG-LS process (ISO/IEC 14495-1), and the lossless mode of the proposed JPEG 2000 scheme (ISO/IEC CD15444-1), new standard schemes that may be incorporated into DICOM, are evaluated here. Three thousand, six hundred and seventy-nine (3,679) single frame grayscale images from multiple anatomical regions, modalities and vendors, were tested. For all images combined JPEG-LS and JPEG 2000 performed equally well (3.81), almost as well as CALIC (3.91), a complex predictive scheme used only as a benchmark. Both out-performed existing JPEG (3.04 with optimum predictor choice per image, 2.79 for previous pixel prediction as most commonly used in DICOM). Text dictionary schemes performed poorly (gzip 2.38), as did image dictionary schemes without statistical modeling (PNG 2.76). Proprietary transform based schemes did not perform as well as JPEG-LS or JPEG 2000 (S+P Arithmetic 3.4, CREW 3.56). Stratified by modality, JPEG-LS compressed CT images (4.00), MR (3.59), NM (5.98), US (3.4), IO (2.66), CR (3.64), DX (2.43), and MG (2.62). CALIC always achieved the highest compression except for one modality for which JPEG-LS did better (MG digital vendor A JPEG-LS 4.02, CALIC 4.01). JPEG-LS outperformed existing JPEG for all modalities. The use of standard schemes can achieve state of the art performance, regardless of modality, JPEG-LS is simple, easy to implement, consumes less memory, and is faster than JPEG 2000, though JPEG 2000 will offer lossy and progressive transmission. It is recommended that DICOM add transfer syntaxes for both JPEG-LS and JPEG 2000.© (2000) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
119 citations
[...]
TL;DR: An image steganography technique is proposed to hide audio signal in image in the transform domain using wavelet transform and it is found that the technique is robust and it can withstand the attacks.
Abstract: Information security is one of the most important factors to be considered when secret information has to be communicated between two parties. Cryptography and steganography are the two techniques used for this purpose. Cryptography scrambles the information, but it reveals the existence of the information. Steganography hides the actual existence of the information so that anyone else other than the sender and the recipient cannot recognize the transmission. In steganography the secret information to be communicated is hidden in some other carrier in such a way that the secret information is invisible. In this paper an image steganography technique is proposed to hide audio signal in image in the transform domain using wavelet transform. The audio signal in any format (MP3 or WAV or any other type) is encrypted and carried by the image without revealing the existence to anybody. When the secret information is hidden in the carrier the result is the stego signal. In this work, the results show good quality stego signal and the stego signal is analyzed for different attacks. It is found that the technique is robust and it can withstand the attacks. The quality of the stego image is measured by Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Metric (SSIM), Universal Image Quality Index (UIQI). The quality of extracted secret audio signal is measured by Signal to Noise Ratio (SNR), Squared Pearson Correlation Coefficient (SPCC). The results show good values for these metrics.
38 citations
"Audio encryption and decryption alg..." refers methods in this paper
[...]
Related Papers (5)
[...]
[...]
[...]
[...]
[...]