scispace - formally typeset
Book ChapterDOI

Blood Leukocyte Object Detection According to Model Parameter-Transfer and Deformable Convolution

TLDR
The model parameter-transfer method is used to alleviate the problem of less leukocyte labeled data in the training model and deformable convolution is introduced into the main network of target detection to improve the accuracy of the object detection model.
Abstract
Currently, leukocyte detection has the problem of scarcity of labeled samples, so a focal dataset must be expanded by merging multiple datasets. At the same time, given the difference in the dyeing methods, dyeing time, and collection techniques, some datasets have the problem of different homology distributions. Moreover, the effect of direct training after dataset merging is not satisfactory. The morphology of the leukocyte types is also variable and stain contamination occurs, thereby leading to the misjudgment of using traditional convolutional networks. Therefore, in this paper, the model parameter-transfer method is used to alleviate the problem of less leukocyte labeled data in the training model and deformable convolution is introduced into the main network of target detection to improve the accuracy of the object detection model. First, numerous leukocyte datasets are used to train the blood leukocyte binary classification detection network, and the model parameters of the blood leukocyte binary classification detection network are transferred to the blood leukocyte multi classification detection network through the transfer of model parameters. This method can make better use of datasets of the same origin and different distributions so as to solve the problem of scarcity in blood leukocyte data sets. Finally, the multi classification detection network is trained quickly and the accurate blood leukocyte detection results are obtained through fine tuning. The experimental results show that compare our method with the traditional Faster RCNN object detection algorithm, \({mAP}_{0.5}\) is 0.056 higher, \({mAP}_{0.7}\) is 0.119 higher, with higher recall by 4%, and better accuracy by 5%. Thus, the method proposed in this paper can achieve highly accurate leukocyte detection.

read more

References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Journal ArticleDOI

Deep learning

TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Book

Deep Learning

TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Related Papers (5)