scispace - formally typeset
Open Access

Chemically- and mechanically-mediated influences on the transport and mechanical characteristics of rock fractures - eScholarship

K.-B. Min
TLDR
In this paper, a model representing pressure-dissolution-like behavior is adapted to define the threshold and resulting response in terms of fundamental thermodynamic properties of a contacting fracture.
Abstract
A model is presented to represent changes in the mechanical and transport characteristics of fractured rock that result from coupled mechanical and chemical effects. The specific influence is the elevation of dissolution rates on contacting asperities, which results in a stress- and temperature-dependent permanent closure. A model representing this pressure-dissolution-like behavior is adapted to define the threshold and resulting response in terms of fundamental thermodynamic properties of a contacting fracture. These relations are incorporated in a stress-stiffening model of fracture closure to define the stress- and temperature-dependency of aperture loss and behavior during stress and temperature cycling. These models compare well with laboratory and field experiments, representing both decoupled isobaric and isothermal responses. The model was applied to explore the impact of these responses on heated structures in rock. The result showed a reduction in ultimate induced stresses over the case where chemical effects were not incorporated, with permanent reduction in final stresses after cooling to ambient conditions. Similarly, permeabilities may be lower than they were in the case where chemical effects were not considered, with a net reduction apparent even after cooling to ambient temperature. These heretofore-neglected effects may have a correspondingly significant impact on the performance of heated structures in rock, such as repositories for the containment of radioactive wastes.

read more

Content maybe subject to copyright    Report

Citations
More filters

VALIDITY OF CUBIC LAW FOR FLUID FLOW IN A DEFORMABLE ROCK FRACTURE - eScholarship

Abstract: The validity of the cubic law for laminar flow of fluids through open fractures consisting of parallel planar plates has been established by others over a wide range of conditions with apertures ranging down to a minimum of 0.2 µm. The law may be given in simplified form by Q/Δh = C(2b)3, where Q is the flow rate, Δh is the difference in hydraulic head, C is a constant that depends on the flow geometry and fluid properties, and 2b is the fracture aperture. The validity of this law for flow in a closed fracture where the surfaces are in contact and the aperture is being decreased under stress has been investigated at room temperature by using homogeneous samples of granite, basalt, and marble. Tension fractures were artificially induced, and the laboratory setup used radial as well as straight flow geometries. Apertures ranged from 250 down to 4µm, which was the minimum size that could be attained under a normal stress of 20 MPa. The cubic law was found to be valid whether the fracture surfaces were held open or were being closed under stress, and the results are not dependent on rock type. Permeability was uniquely defined by fracture aperture and was independent of the stress history used in these investigations. The effects of deviations from the ideal parallel plate concept only cause an apparent reduction in flow and may be incorporated into the cubic law by replacing C by C/ƒ. The factor ƒ varied from 1.04 to 1.65 in these investigations. The model of a fracture that is being closed under normal stress is visualized as being controlled by the strength of the asperities that are in contact. These contact areas are able to withstand significant stresses while maintaining space for fluids to continue to flow as the fracture aperture decreases. The controlling factor is the magnitude of the aperture, and since flow depends on (2b)3, a slight change in aperture evidently can easily dominate any other change in the geometry of the flow field. Thus one does not see any noticeable shift in the correlations of our experimental results in passing from a condition where the fracture surfaces were held open to one where the surfaces were being closed under stress.
Journal ArticleDOI

The geomechanics of CO2 storage in deep sedimentary formations

TL;DR: In this paper, the authors provide a review of the geomechanics and modeling of geOMEchanics associated with geologic carbon storage (GCS), focusing on storage in deep sedimentary formations, in particular saline aquifers.
Journal ArticleDOI

Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations

TL;DR: Despite some limitations to fully adapting a commercial code such as FLAC^3^D for some specialized research and computational needs, TOUGH-FLAC is likely to remain a pragmatic simulation approach, with an increasing number of users in both academia and industry.
Journal ArticleDOI

Thermal–hydrologic–mechanical–chemical processes in the evolution of engineered geothermal reservoirs

TL;DR: In this article, Taron et al. introduced a new methodology and numerical simulator for the modeling of thermal-hydrologic-mechanical-chemical processes in dual-porosity media.
Journal ArticleDOI

Numerical simulation of thermal-hydrologic-mechanical-chemical processes in deformable, fractured porous media

TL;DR: Taron et al. as mentioned in this paper couple the thermal, hydrologic, and chemical precipitation/dissolution capabilities of ToughREACT with the mechanical framework of FLAC3D to examine THMC processes in deformable, fractured porous media.
References
More filters
Book

Introduction to applied mathematics

TL;DR: In this article, the authors introduce the concept of applied mathematics and apply it to applied mathematics problems in the context of applied applications. [2]... ].. [3]
Journal ArticleDOI

Mechanical properties of lungs.

Jere Mead

VALIDITY OF CUBIC LAW FOR FLUID FLOW IN A DEFORMABLE ROCK FRACTURE - eScholarship

Abstract: The validity of the cubic law for laminar flow of fluids through open fractures consisting of parallel planar plates has been established by others over a wide range of conditions with apertures ranging down to a minimum of 0.2 µm. The law may be given in simplified form by Q/Δh = C(2b)3, where Q is the flow rate, Δh is the difference in hydraulic head, C is a constant that depends on the flow geometry and fluid properties, and 2b is the fracture aperture. The validity of this law for flow in a closed fracture where the surfaces are in contact and the aperture is being decreased under stress has been investigated at room temperature by using homogeneous samples of granite, basalt, and marble. Tension fractures were artificially induced, and the laboratory setup used radial as well as straight flow geometries. Apertures ranged from 250 down to 4µm, which was the minimum size that could be attained under a normal stress of 20 MPa. The cubic law was found to be valid whether the fracture surfaces were held open or were being closed under stress, and the results are not dependent on rock type. Permeability was uniquely defined by fracture aperture and was independent of the stress history used in these investigations. The effects of deviations from the ideal parallel plate concept only cause an apparent reduction in flow and may be incorporated into the cubic law by replacing C by C/ƒ. The factor ƒ varied from 1.04 to 1.65 in these investigations. The model of a fracture that is being closed under normal stress is visualized as being controlled by the strength of the asperities that are in contact. These contact areas are able to withstand significant stresses while maintaining space for fluids to continue to flow as the fracture aperture decreases. The controlling factor is the magnitude of the aperture, and since flow depends on (2b)3, a slight change in aperture evidently can easily dominate any other change in the geometry of the flow field. Thus one does not see any noticeable shift in the correlations of our experimental results in passing from a condition where the fracture surfaces were held open to one where the surfaces were being closed under stress.
Journal ArticleDOI

Fundamentals of rock joint deformation

TL;DR: In this article, the deformation characteristics of rock joints under normal and shear loading were investigated by conducting loading/unloading and repeated load cycling tests on a wide variety of fresh and weathered joints in five different rock types.
Journal ArticleDOI

A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock

TL;DR: In this article, two computer codes, TOUGH2 and FLAC3D, are linked and jointly executed for coupled thermal-hydrologic-mechanical (THM) analysis of multiphase fluid flow, heat transfer, and deformation in fractured and porous rock.