scispace - formally typeset
Open AccessBook ChapterDOI

Convergence of Generalized MUSCL Schemes

Reads0
Chats0
TLDR
Semidiscrete generalizations of the second order extension of Godunov’s scheme, known as the MUSCL scheme, are constructed, starting with any three point “E” scheme, used to approximate scalar conservation laws in one space dimension.
Abstract
Semidiscrete generalizations of the second order extension of Godunov’s scheme, known as the MUSCL scheme, are constructed, starting with any three point “E” scheme. They are used to approximate scalar conservation laws in one space dimension. For convex conservation laws, each member of a wide class is proven to be a convergent approximation to the correct physical solution. Comparison with another class of high resolution convergent schemes is made.

read more

Content maybe subject to copyright    Report

NASA ContractorReport172306
1C ASE 1NAsS40A;1CR2_872306
r,OT_ B_;TA,r.._IF,RO_.!"n_I3V,OO:.W
CONVERGENCE OF GENERALIZED MUSCL SCHEMES
Stanley Osher
Contract No. NASI-17070
February 1984
INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665
Operated by the Universities Space Research Association
:'.r<_o'"i_,4
National Aeronautics and
Space Administration L',!"_Lr:;' RE_E,r.RC:4,;ErJr_R
Lf.3P,ARy. NASA
Langley Research Center H.,_.:,q-on,V=R_r't._,
Hampton, Virginia 23665


'>-
t,
:
5
c.%:;
.!;:\.z>I..s
-i-.
:.
-
%
7.32
-
--
,
i'..
...
:
.......
i.
.....
l
<
,-.-,..-,
<-.
-
.
.
.
-
.
-.
.
-
. .
-
.
.
-
r,
./..<
:
.i
--:
!.>.
<
+
i;
i
.>i
3-c.
.<
i
r:;
.:;
i,..'.
-
,.
.
..
,
-2
p:,;
:
*:y:>
-2
!I.*.
+
8,
.
..-.
T
lz.!:;
\F
*
<-...
.2.
<x::-
T-
:
::
,i
.-.
,*%
c-
<\:-?
.r
,-.
:T.?
*
.-:
;
.
.
. 2.. .
,
i
z.::
.
-.
-
.- .
=
--
:..
!"..A.
8
"..,
.
-
i
.F
:
-
:
z.7.
.<
._.
!
.
-..-?..-I!
...
!
,z
ac.Ts.
hi&~-~-f~-$
7.-:7:-.;:
,-%
.
.
.
-
-
-
-
-----
. . -.
-
-
.
-
-
i...! i
3:
.
!
8::
!.L!
.
..<!
...
A
<
c.:.vj<>
xChCC-C.:.~-?::l
2.i~
^;
.->c.
<7'7.?p<=
i-.T!.-<i
'27
i:.-;
!
.::
!.i
=
,;<>
.
!
,=
>-.-.
~h!,~f.
-.',-~;:>7;>
hi~!-y
-?7!:!
h.:.*~
:nrt=-s~~.-;:::?:~*~.~:
"
I
a-S
.2
.-.!..!...
!.'!!.-.?.
?.:.-*<..->
!.!!..-<A
-I..'
!I.-.!
i'?:
;
i:,,:
-,
>
:'L-L.-
"
.*'..<-.?.-\
--
-.
-
'2
.>
-"
-
gi$2c:Z<?:
.. .
.
.,
:>
.?
s.
z.
&!-.F
'TI:
.-,!!!
!.
.-*.--.
;:.,-
;'..
..-,...
,;
..
,
;
,
.
.-.
..-.
$
.=.-.-'
:
i:.::~;
5~=.:3.
;
j
~r~
p,:-;rc
e~ra
--
-
.
.....
..
,
.
,...
.'
.
>_.;.
+
!
-
-._.
~:.-;:.-.i_ii:jir~;
;
i
;‘
.:...
-.k..:-
..
-
Tic==
cj.-..-::
-~;..+-..-..la+
..-,!
!,-.
<-.%->!~~.j~'~~~:i:
:.-;!
>..-!
!..-!
.>
i 1
LC<-?
y:;;:~i.-.~ z:.-.i r:~i.~~
;-.>;
.
:
!
i,r:
i i....y!-.<->i
;-
p.:
;,
=
5
.,
$7:~
~22
.?.
ti-
-.
.. .
7,';.
!
..
i.
=/
i-;.>;
]i-i.%.
j
.yi;
.7..?..?.=
p:!<<--:?.
<
&:-
..:=
-T..{
-:
!!+-..<..:
'$
:
r:;
:..c.-..>i
:
it.-;; <->ii:
.:
=
U-:??.>-.
f
:-:-.:
-
<?j
2
.;
.
1
,-<,
ri,;,fATI
?-iTTC
I::... ."""-
!i?
(in':
,t.Ac
C-.J;>+
f
!:!!>'-=!..!
I.-.
.-::.---
-.
.
..
.
-.
,.
!!
.
!
!.-.
r::.-,.:,;
:.ii
r5:.-;
;"..-'iJS:
::av.
/<+~~"R$->a.~~"'L"fi"\
'+'r:>w""f-zT?p:":
;
C.:!ip.~~<~CfiA\i:!~~.$T~~.%y~:eE~~..~T~.<->r:'s.;;<<+~~~:-~~
.
.
....
..
.
i...:.--;
....
zz$=;-':\
~LT:PL?.!
!
!!
1 !....-?fi.ii'iF.!
i<->y.i;
:
,!.>>i-c..::zi i=.-;i.,j
.-F.ij<.-*,
..-.,
-,!,!.<
,-.
8
"..
.;
;
;-fij
F.i-j.T
!
!
5
:.:i
>;)i-;j
L-5
y<
?:e
...
::.t:-
2
ri
!,
.l..
i/
$!-GO),
I
TI-;?:;!
*Fi-ii-j
i
3
t;/NAM
si/
I
NEQ-!G(:
.,.
!,-
1
-
!
T
+
CEI.
.
-.-.
,
.-;:.-._.nini.
.:.
CC
<'i':
5E.C
-
-
:.\
.
hi
.
"
".
:-..
..;.
-.
--
!!.-.!!.
r!:,-?i-i?.2i
. .
~RII.=
12.~.:fi5-x-:i~~--~-~.~~.
~s~~-:~~2:~--.-=r..~..y.
.-.:+
;~...*Eie~;c~Fic~
:-.:.-!-;C.F
~:..!?.=..~..:-i.r..+-..
-.i
<-.r-.~!i:~-..:-..*.:*r-
!
!.-8
.-.
.>..-!!!
!
..
.
.
.
"
..
.
-
.-.-
>..-!!..-!
.-5:
~~%~i-~;-;ii~,
;?!
..->
!
..-*..-
?..
;-Ti
.ys
:.>i
:
i-:
;><-;:.-+:.-!: i\-;
.+
.?
=:,-.;-..:-..:<:.-..
I<
r
...-
..st<
+-..
>=
*?..&
?:A:
it=<-.!
<-
..?.
+
.....-*..-.
-.:s
.*.,
;-
.:.->F:c
*
+*!
!:.-.
*
.-....-
$
c-
>;=-
<
+-.:ys
,+%
<
At-.:
-:?...
.-..;
!:xi:ic! r..i;:.;;i;z!
.
-
.
.
.
,
-.
..
-
2 .-!!..-
yi:.>.-s,-.x-
c,=.-.:
icciic!
.2.{
;
-...-,!
!.>
,-:
..-a.,L
.-T<L!
.>
,-,d...
,-
;.:.:=
?!.!
;.
i-:.
,.
,:.i.;y
;I:.
,id?
<?ass
;is
~rs,j%n
to
55
SZ
-:
~~;f'~-~:~.
appr~im~tj~~
t~
f$-..
.-!:c
-7..
:._.<-;!
-..-.
M>-
c:.:;-
.-...-.+
-
:-.
r..:-..z.
>
:-.
L=
.-A
.-.
=-.
+
:-.
k...
:-.,
y;;
:-.,
r.
<
:-.
7*-:
-=
..-i
.-.
.
<.
?
::;.:
::
..
.
,,
!.!
<-!
>.,-!
!
.-
:-,;-.i
1-;;t-.-.
!
z,
!;!,>:.>?
=
-
-.
-
.
-
.
. .
-
-


3 117 62
CONVERGENCEOFGENERALIZEDM_SCL SCHEMES
Stanley Osher
University of California
Los Angeles
Abstract
Semi-discrete generalizations of the second order extension of Godunov's
scheme, known as the MUSCL scheme, are constructed, starting with any three
point "E" scheme. They are used to approximate scalar conservation laws in
one space dimension. For convex conservation laws, each member of a wide
class is proven to be a convergent approximation to the correct physical
solution. Comparison with another class of high resolution convergent schemes
is made.
Research supported in part by NSF Grant No. MCS 82-00788, ARO Grant No.
DAAG 29-82-k-0090, and NASA Grant No. NAG-I-270. Part of the research was
carried out while the author was a visitor at the Institute for Computer
Applications in Science and Engineering (ICASE), NASA Langely Research Center,
Hampton, VA., which is operated under NASA Contract No. NASI-17070.
i

Citations
More filters
Book

Finite Volume Methods for Hyperbolic Problems

TL;DR: The CLAWPACK software as discussed by the authors is a popular tool for solving high-resolution hyperbolic problems with conservation laws and conservation laws of nonlinear scalar scalar conservation laws.
Journal ArticleDOI

TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework

TL;DR: In this paper, a classe de methodes a elements finis de Galerkin discontinues a variation totale bornee for the resolution des lois de conservation, and the convergence of the convergence is studied.
Journal ArticleDOI

New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations

TL;DR: It is proved that a scalar version of the high-resolution central scheme is nonoscillatory in the sense of satisfying the total-variation diminishing property in the one-dimensional case and the maximum principle in two-space dimensions.
Journal ArticleDOI

The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case

TL;DR: The two-dimensional version of the Runge- Kutta Local Projection Discontinuous Galerkin (RKDG) methods are studied, which can easily handle the boundary conditions, verify maximum principles, and are formally uniformly high-order accurate.

Review Article Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems

TL;DR: The theoretical and algorithmic aspects of the Runge–Kutta discontinuous Galerkin methods are reviewed and several applications including nonlinear conservation laws, the compressible and incompressible Navier–Stokes equations, and Hamilton–Jacobi-like equations are shown.
References
More filters
Journal ArticleDOI

Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method

TL;DR: In this article, a second-order extension of the Lagrangean method is proposed to integrate the equations of ideal compressible flow, which is based on the integral conservation laws and is dissipative, so that it can be used across shocks.
Book

High resolution schemes for hyperbolic conservation laws

TL;DR: In this article, a class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented, which are obtained by applying a nonoscillatory first order accurate scheme to an appropriately modified flux function.
Journal ArticleDOI

High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws

TL;DR: The technique of obtaining high resolution, second order, oscillation free (TVD), explicit scalar difference schemes, by the addition of a limited antidiffusive flux to a first order scheme is described in this article.
Journal ArticleDOI

Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme

TL;DR: Fromm's second-order scheme for integrating the linear convection equation is made monotonic through the inclusion of nonlinear feedback terms in this paper, where care is taken to keep the scheme in conservation form.
Related Papers (5)
Frequently Asked Questions (1)
Q1. What are the contributions in this paper?

Part of the research was carried out while the author was a visitor at the Institute for Computer Applications in Science and Engineering ( ICASE ), NASA Langely Research Center, Hampton, VA., which is operated under NASA Contract No. NASI-17070.