scispace - formally typeset
Open AccessProceedings ArticleDOI

Deep visual foresight for planning robot motion

Chelsea Finn, +1 more
- pp 2786-2793
TLDR
This work develops a method for combining deep action-conditioned video prediction models with model-predictive control that uses entirely unlabeled training data and enables a real robot to perform nonprehensile manipulation — pushing objects — and can handle novel objects not seen during training.
Abstract
A key challenge in scaling up robot learning to many skills and environments is removing the need for human supervision, so that robots can collect their own data and improve their own performance without being limited by the cost of requesting human feedback. Model-based reinforcement learning holds the promise of enabling an agent to learn to predict the effects of its actions, which could provide flexible predictive models for a wide range of tasks and environments, without detailed human supervision. We develop a method for combining deep action-conditioned video prediction models with model-predictive control that uses entirely unlabeled training data. Our approach does not require a calibrated camera, an instrumented training set-up, nor precise sensing and actuation. Our results show that our method enables a real robot to perform nonprehensile manipulation — pushing objects — and can handle novel objects not seen during training.

read more

Citations
More filters
Posted Content

NIPS 2016 Tutorial: Generative Adversarial Networks

Ian Goodfellow
- 31 Dec 2016 - 
TL;DR: This report summarizes the tutorial presented by the author at NIPS 2016 on generative adversarial networks (GANs), and describes state-of-the-art image models that combine GANs with other methods.
Proceedings ArticleDOI

MagNet: A Two-Pronged Defense against Adversarial Examples

TL;DR: MagNet, a framework for defending neural network classifiers against adversarial examples, is proposed and it is shown empirically that MagNet is effective against the most advanced state-of-the-art attacks in blackbox and graybox scenarios without sacrificing false positive rate on normal examples.
Posted Content

Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems

TL;DR: This tutorial article aims to provide the reader with the conceptual tools needed to get started on research on offline reinforcement learning algorithms: reinforcementlearning algorithms that utilize previously collected data, without additional online data collection.
Posted Content

Deep Reinforcement Learning: An Overview

Yuxi Li
- 25 Jan 2017 - 
TL;DR: This work discusses core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration, and important mechanisms for RL, including attention and memory, unsupervised learning, transfer learning, multi-agent RL, hierarchical RL, and learning to learn.
Journal ArticleDOI

Deep Reinforcement Learning for Multiagent Systems: A Review of Challenges, Solutions, and Applications

TL;DR: A survey of different approaches to problems related to multiagent deep RL (MADRL) is presented, including nonstationarity, partial observability, continuous state and action spaces, multiagent training schemes, and multiagent transfer learning.
References
More filters
Journal ArticleDOI

Human-level control through deep reinforcement learning

TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Proceedings Article

Auto-Encoding Variational Bayes

TL;DR: A stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case is introduced.
Book

A Mathematical Introduction to Robotic Manipulation

TL;DR: In this paper, the authors present a detailed overview of the history of multifingered hands and dextrous manipulation, and present a mathematical model for steerable and non-driveable hands.
Proceedings Article

R-FCN: Object Detection via Region-based Fully Convolutional Networks

TL;DR: R-FCN as mentioned in this paper proposes position-sensitive score maps to address the dilemma between translation-invariance in image classification and translation-variance in object detection, and achieves state-of-the-art performance on the PASCAL VOC dataset.
Posted Content

Layer Normalization

TL;DR: In this paper, layer normalization is applied to recurrent neural networks by computing the mean and variance used for normalization from all of the summed inputs to the neurons in a layer on a single training case.
Related Papers (5)