scispace - formally typeset
Open AccessJournal Article

End-to-end training of deep visuomotor policies

TLDR
In this article, a guided policy search method is used to map raw image observations directly to torques at the robot's motors, with supervision provided by a simple trajectory-centric reinforcement learning method.
Abstract
Policy search methods can allow robots to learn control policies for a wide range of tasks, but practical applications of policy search often require hand-engineered components for perception, state estimation, and low-level control. In this paper, we aim to answer the following question: does training the perception and control systems jointly end-to-end provide better performance than training each component separately? To this end, we develop a method that can be used to learn policies that map raw image observations directly to torques at the robot's motors. The policies are represented by deep convolutional neural networks (CNNs) with 92,000 parameters, and are trained using a guided policy search method, which transforms policy search into supervised learning, with supervision provided by a simple trajectory-centric reinforcement learning method. We evaluate our method on a range of real-world manipulation tasks that require close coordination between vision and control, such as screwing a cap onto a bottle, and present simulated comparisons to a range of prior policy search methods.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings Article

Asynchronous methods for deep reinforcement learning

TL;DR: A conceptually simple and lightweight framework for deep reinforcement learning that uses asynchronous gradient descent for optimization of deep neural network controllers and shows that asynchronous actor-critic succeeds on a wide variety of continuous motor control problems as well as on a new task of navigating random 3D mazes using a visual input.
Posted Content

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor

TL;DR: In this article, an off-policy actor-critic deep RL algorithm based on the maximum entropy reinforcement learning framework is proposed, where the actor aims to maximize expected reward while also maximizing entropy.
Journal ArticleDOI

Efficient Processing of Deep Neural Networks: A Tutorial and Survey

TL;DR: In this paper, the authors provide a comprehensive tutorial and survey about the recent advances toward the goal of enabling efficient processing of DNNs, and discuss various hardware platforms and architectures that support DNN, and highlight key trends in reducing the computation cost of deep neural networks either solely via hardware design changes or via joint hardware and DNN algorithm changes.
Journal ArticleDOI

Deep convolutional neural networks for image classification: A comprehensive review

TL;DR: This review, which focuses on the application of CNNs to image classification tasks, covers their development, from their predecessors up to recent state-of-the-art deep learning systems.
Proceedings ArticleDOI

Domain randomization for transferring deep neural networks from simulation to the real world

TL;DR: This paper explores domain randomization, a simple technique for training models on simulated images that transfer to real images by randomizing rendering in the simulator, and achieves the first successful transfer of a deep neural network trained only on simulated RGB images to the real world for the purpose of robotic control.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Journal ArticleDOI

Deep learning

TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Proceedings ArticleDOI

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Related Papers (5)