scispace - formally typeset
Open AccessProceedings ArticleDOI

DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks

TLDR
DeepFool as discussed by the authors proposes the DeepFool algorithm to efficiently compute perturbations that fool deep networks, and thus reliably quantify the robustness of these classifiers by making them more robust.
Abstract
State-of-the-art deep neural networks have achieved impressive results on many image classification tasks. However, these same architectures have been shown to be unstable to small, well sought, perturbations of the images. Despite the importance of this phenomenon, no effective methods have been proposed to accurately compute the robustness of state-of-the-art deep classifiers to such perturbations on large-scale datasets. In this paper, we fill this gap and propose the DeepFool algorithm to efficiently compute perturbations that fool deep networks, and thus reliably quantify the robustness of these classifiers. Extensive experimental results show that our approach outperforms recent methods in the task of computing adversarial perturbations and making classifiers more robust.1

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Towards Deep Learning Models Resistant to Adversarial Attacks

TL;DR: This work studies the adversarial robustness of neural networks through the lens of robust optimization, and suggests the notion of security against a first-order adversary as a natural and broad security guarantee.
Journal ArticleDOI

A survey on Image Data Augmentation for Deep Learning

TL;DR: This survey will present existing methods for Data Augmentation, promising developments, and meta-level decisions for implementing DataAugmentation, a data-space solution to the problem of limited data.
Proceedings ArticleDOI

Universal Adversarial Perturbations

TL;DR: The surprising existence of universal perturbations reveals important geometric correlations among the high-dimensional decision boundary of classifiers and outlines potential security breaches with the existence of single directions in the input space that adversaries can possibly exploit to break a classifier on most natural images.
Proceedings ArticleDOI

Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods

TL;DR: In this paper, the authors survey ten recent proposals for adversarial examples and compare their efficacy, concluding that all can be defeated by constructing new loss functions, and propose several simple guidelines for evaluating future proposed defenses.
Journal ArticleDOI

One Pixel Attack for Fooling Deep Neural Networks

TL;DR: This paper proposes a novel method for generating one-pixel adversarial perturbations based on differential evolution (DE), which requires less adversarial information (a black-box attack) and can fool more types of networks due to the inherent features of DE.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Posted Content

Caffe: Convolutional Architecture for Fast Feature Embedding

TL;DR: Caffe as discussed by the authors is a BSD-licensed C++ library with Python and MATLAB bindings for training and deploying general-purpose convolutional neural networks and other deep models efficiently on commodity architectures.
Proceedings ArticleDOI

Caffe: Convolutional Architecture for Fast Feature Embedding

TL;DR: Caffe provides multimedia scientists and practitioners with a clean and modifiable framework for state-of-the-art deep learning algorithms and a collection of reference models for training and deploying general-purpose convolutional neural networks and other deep models efficiently on commodity architectures.
Proceedings Article

Intriguing properties of neural networks

TL;DR: It is found that there is no distinction between individual highlevel units and random linear combinations of high level units, according to various methods of unit analysis, and it is suggested that it is the space, rather than the individual units, that contains of the semantic information in the high layers of neural networks.
Related Papers (5)