scispace - formally typeset
Journal ArticleDOI

Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization

Reads0
Chats0
TLDR
This paper proposes a self- Adaptive DE (SaDE) algorithm, in which both trial vector generation strategies and their associated control parameter values are gradually self-adapted by learning from their previous experiences in generating promising solutions.
Abstract
Differential evolution (DE) is an efficient and powerful population-based stochastic search technique for solving optimization problems over continuous space, which has been widely applied in many scientific and engineering fields. However, the success of DE in solving a specific problem crucially depends on appropriately choosing trial vector generation strategies and their associated control parameter values. Employing a trial-and-error scheme to search for the most suitable strategy and its associated parameter settings requires high computational costs. Moreover, at different stages of evolution, different strategies coupled with different parameter settings may be required in order to achieve the best performance. In this paper, we propose a self-adaptive DE (SaDE) algorithm, in which both trial vector generation strategies and their associated control parameter values are gradually self-adapted by learning from their previous experiences in generating promising solutions. Consequently, a more suitable generation strategy along with its parameter settings can be determined adaptively to match different phases of the search process/evolution. The performance of the SaDE algorithm is extensively evaluated (using codes available from P. N. Suganthan) on a suite of 26 bound-constrained numerical optimization problems and compares favorably with the conventional DE and several state-of-the-art parameter adaptive DE variants.

read more

Citations
More filters
Journal ArticleDOI

Differential Evolution: A Survey of the State-of-the-Art

TL;DR: A detailed review of the basic concepts of DE and a survey of its major variants, its application to multiobjective, constrained, large scale, and uncertain optimization problems, and the theoretical studies conducted on DE so far are presented.
Journal ArticleDOI

Recent advances in differential evolution – An updated survey

TL;DR: It is found that it is a high time to provide a critical review of the latest literatures published and also to point out some important future avenues of research on DE.
Journal ArticleDOI

Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters

TL;DR: A novel method, called composite DE (CoDE), has been proposed, which uses three trial vector generation strategies and three control parameter settings and randomly combines them to generate trial vectors.
Journal ArticleDOI

Differential evolution algorithm with ensemble of parameters and mutation strategies

TL;DR: The performance of EPSDE is evaluated on a set of bound-constrained problems and is compared with conventional DE and several state-of-the-art parameter adaptive DE variants.
Journal ArticleDOI

Differential Evolution Using a Neighborhood-Based Mutation Operator

TL;DR: A family of improved variants of the DE/target-to-best/1/bin scheme, which utilizes the concept of the neighborhood of each population member, and is shown to be statistically significantly better than or at least comparable to several existing DE variants as well as a few other significant evolutionary computing techniques over a test suite of 24 benchmark functions.
References
More filters
Journal ArticleDOI

Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces

TL;DR: In this article, a new heuristic approach for minimizing possibly nonlinear and non-differentiable continuous space functions is presented, which requires few control variables, is robust, easy to use, and lends itself very well to parallel computation.
Book

Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series)

TL;DR: This volume explores the differential evolution (DE) algorithm in both principle and practice and is a valuable resource for professionals needing a proven optimizer and for students wanting an evolutionary perspective on global numerical optimization.
Book

Differential Evolution: A Practical Approach to Global Optimization

TL;DR: The differential evolution (DE) algorithm is a practical approach to global numerical optimization which is easy to understand, simple to implement, reliable, and fast as discussed by the authors, which is a valuable resource for professionals needing a proven optimizer and for students wanting an evolutionary perspective on global numerical optimisation.
Journal ArticleDOI

Evolutionary programming made faster

TL;DR: A "fast EP" (FEP) is proposed which uses a Cauchy instead of Gaussian mutation as the primary search operator and is proposed and tested empirically, showing that IFEP performs better than or as well as the better of FEP and CEP for most benchmark problems tested.

Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization

TL;DR: This special session is devoted to the approaches, algorithms and techniques for solving real parameter single objective optimization without making use of the exact equations of the test functions.
Related Papers (5)