scispace - formally typeset
Journal ArticleDOI

Field Determination of the Three-Dimensional Hydraulic Conductivity Tensor of Anisotropic Media: 2. Methodology and Application to Fractured Rocks

TLDR
In this paper, the results of cross-hole tests conducted in anisotropic porous or fractured media are analyzed graphically, where the injection and monitoring intervals are short relative to the distance between them.
Abstract
The analytical solutions developed in the first paper can be used to interpret the results of cross-hole tests conducted in anisotropic porous or fractured media. In the particular case where the injection and monitoring intervals are short relative to the distance between them, the test results can be analyzed graphically. From the transient variation of hydraulic head in a given monitoring interval, one can determine the directional hydraulic diffusivity, Kd(e)/Ss, and the quantity D/Ss, by curve matching. (Here Kd(e) is directional hydraulic conductivity parallel to the unit vector, e, pointing from the injection to the monitoring interval, Ss is specific storage, and D is the determinant of the hydraulic conductivity tensor, K.) The principal values and directions of K, together with Ss, can then be evaluated by fitting an ellipsoid to the square roots of the directional diffusivities. Ideally, six directional measurements are required. In practice, a larger number of measurements is often necessary to enable fitting an ellipsoid to the data by least squares. If the computed [Kd(e)/ss]½ values fluctuate so severely that a meaningful least squares fit is not possible, one has a direct indication that the subsurface does not behave as a uniform anisotropic medium on the scale of the test. Test results from a granitic rock near Oracle in southern Arizona are presented to illustrate how the method works for fractured rocks. At the site, the Oracle granite is shown to respond as a near-uniform, anisotropic medium, the hydraulic conductivity of which is strongly controlled by the orientations of major fracture sets. The cross-hole test results are shown to be consistent with the results of more than 100 single-hole packer tests conducted at the site.

read more

Citations
More filters
Journal ArticleDOI

Characterizing flow and transport in fractured geological media: A review

TL;DR: In this paper, the authors analyze measurements, conceptual pictures, and mathematical models of flow and transport phenomena in fractured rock systems, including water flow, conservative and reactive solutes, and two-phase flow.
Journal ArticleDOI

Trends, prospects and challenges in quantifying flow and transport through fractured rocks

TL;DR: In this paper, the authors discuss issues associated with the quantification of flow and transport through fractured rocks on scales not exceeding those typically associated with single and multi-well pressure (or flow) and tracer tests.
Journal ArticleDOI

Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model

TL;DR: In this paper, a large-scale investigation of fracture flow was conducted in a granite uranium mine at Fanay-Augeres, France, and four types of data were collected: (1) geometry of the fracture network; (2) local hydraulic properties measured by injection tests in boreholes; (3) global hydraulic behavior from flow rate and piezometric head distribution at a 106 m3 scale; and (4) tracer tests performed at a scale of up to 40 m.
Journal ArticleDOI

Channel model of flow through fractured media

TL;DR: In this paper, the authors studied the fluid flow and solute transport in a tight fractured medium in terms of flow through channels of variable aperture, characterized by an aperture density distribution and a spatial correlation length.
Journal ArticleDOI

Flow and tracer transport in a single fracture: A stochastic model and its relation to some field observations

TL;DR: In this article, the flow and solute transport through a single rough-surfaced fracture were carried out using geostatistical methods, based on a given aperture probability density distribution and a specified spatial correlation length.
References
More filters
Journal ArticleDOI

Porous media equivalents for networks of discontinuous fractures

TL;DR: In this article, the authors used the theory of flow through fractured rock and homogeneous anisotropic porous media to determine when a fractured rock behaves as a continuum, i.e., there is an insignificant change in the value of the equivalent permeability with a small addition or subtraction to the test volume and an equivalent tensor exists which predicts the correct flux when the direction of a constant gradient is changed.