scispace - formally typeset
Open AccessJournal ArticleDOI

Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations

TLDR
In this paper, the mathematical setting of stationary systems modelled by elliptic partial differential equations with stochastic coefficients (random fields) is investigated and stability with respect to stability.
About
This article is published in Computer Methods in Applied Mechanics and Engineering.The article was published on 2005-04-08 and is currently open access. It has received 590 citations till now. The article focuses on the topics: Stochastic partial differential equation & Polynomial chaos.

read more

Citations
More filters
Journal ArticleDOI

Global sensitivity analysis using polynomial chaos expansions

TL;DR: In this article, generalized polynomial chaos expansions (PCE) are used to build surrogate models that allow one to compute the Sobol' indices analytically as a post-processing of the PCE coefficients.
Journal ArticleDOI

A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data

TL;DR: A rigorous convergence analysis is provided and exponential convergence of the “probability error” with respect to the number of Gauss points in each direction in the probability space is demonstrated, under some regularity assumptions on the random input data.
Journal ArticleDOI

A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data

TL;DR: This work demonstrates algebraic convergence with respect to the total number of collocation points and quantifies the effect of the dimension of the problem (number of input random variables) in the final estimates, indicating for which problems the sparse grid stochastic collocation method is more efficient than Monte Carlo.
Journal ArticleDOI

Adaptive sparse polynomial chaos expansion based on least angle regression

TL;DR: A non intrusive method that builds a sparse PC expansion, which may be obtained at a reduced computational cost compared to the classical ''full'' PC approximation.
Journal ArticleDOI

The stochastic finite element method: Past, present and future

TL;DR: A state-of-the-art review of past and recent developments in the SFEM area and indicating future directions as well as some open issues to be examined by the computational mechanics community in the future are provided.
References
More filters
Book

Matrix computations

Gene H. Golub
Book

The Finite Element Method for Elliptic Problems

TL;DR: The finite element method has been applied to a variety of nonlinear problems, e.g., Elliptic boundary value problems as discussed by the authors, plate problems, and second-order problems.
Book

Finite Element Method for Elliptic Problems

TL;DR: In this article, Ciarlet presents a self-contained book on finite element methods for analysis and functional analysis, particularly Hilbert spaces, Sobolev spaces, and differential calculus in normed vector spaces.
Book

Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Classics in Applied Mathematics, 16)

TL;DR: In this paper, Schnabel proposed a modular system of algorithms for unconstrained minimization and nonlinear equations, based on Newton's method for solving one equation in one unknown convergence of sequences of real numbers.
Book

Numerical Solution of Stochastic Differential Equations

TL;DR: In this article, a time-discrete approximation of deterministic Differential Equations is proposed for the stochastic calculus, based on Strong Taylor Expansions and Strong Taylor Approximations.
Related Papers (5)