scispace - formally typeset
Journal ArticleDOI

Generalized Linear Models with Random Effects; a Gibbs Sampling Approach

TLDR
This article cast the generalized linear random effects model in a Bayesian framework and use a Monte Carlo method, the Gibbs sampler, to overcome the current computational limitations, which is flexible to easily accommodate changes in the number of observations.
Abstract
Generalized linear models have unified the approach to regression for a wide variety of discrete, continuous, and censored response variables that can be assumed to be independent across experimental units. In applications such as longitudinal studies, genetic studies of families, and survey sampling, observations may be obtained in clusters. Responses from the same cluster cannot be assumed to be independent. With linear models, correlation has been effectively modeled by assuming there are cluster-specific random effects that derive from an underlying mixing distribution. Extensions of generalized linear models to include random effects has, thus far, been hampered by the need for numerical integration to evaluate likelihoods. In this article, we cast the generalized linear random effects model in a Bayesian framework and use a Monte Carlo method, the Gibbs sampler, to overcome the current computational limitations. The resulting algorithm is flexible to easily accommodate changes in the number...

read more

Citations
More filters
Journal ArticleDOI

Inference from Iterative Simulation Using Multiple Sequences

TL;DR: The focus is on applied inference for Bayesian posterior distributions in real problems, which often tend toward normal- ity after transformations and marginalization, and the results are derived as normal-theory approximations to exact Bayesian inference, conditional on the observed simulations.
Journal ArticleDOI

Bayesian measures of model complexity and fit

TL;DR: In this paper, the authors consider the problem of comparing complex hierarchical models in which the number of parameters is not clearly defined and derive a measure pD for the effective number in a model as the difference between the posterior mean of the deviances and the deviance at the posterior means of the parameters of interest, which is related to other information criteria and has an approximate decision theoretic justification.
Journal ArticleDOI

Approximate inference in generalized linear mixed models

TL;DR: In this paper, generalized linear mixed models (GLMM) are used to estimate the marginal quasi-likelihood for the mean parameters and the conditional variance for the variances, and the dispersion matrix is specified in terms of a rank deficient inverse covariance matrix.
Journal ArticleDOI

MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package

TL;DR: The R package MCMCglmm implements Markov chain Monte Carlo methods for generalized linear mixed models, which provide a flexible framework for modeling a range of data, although with non-Gaussian response variables the likelihood cannot be obtained in closed form.
Journal ArticleDOI

Markov Chains for Exploring Posterior Distributions

Luke Tierney
- 01 Dec 1994 - 
TL;DR: Several Markov chain methods are available for sampling from a posterior distribution as discussed by the authors, including Gibbs sampler and Metropolis algorithm, and several strategies for constructing hybrid algorithms, which can be used to guide the construction of more efficient algorithms.
References
More filters
Journal ArticleDOI

Equation of state calculations by fast computing machines

TL;DR: In this article, a modified Monte Carlo integration over configuration space is used to investigate the properties of a two-dimensional rigid-sphere system with a set of interacting individual molecules, and the results are compared to free volume equations of state and a four-term virial coefficient expansion.
Book

Generalized Linear Models

TL;DR: In this paper, a generalization of the analysis of variance is given for these models using log- likelihoods, illustrated by examples relating to four distributions; the Normal, Binomial (probit analysis, etc.), Poisson (contingency tables), and gamma (variance components).
Journal ArticleDOI

Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images

TL;DR: The analogy between images and statistical mechanics systems is made and the analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations, creating a highly parallel ``relaxation'' algorithm for MAP estimation.
Journal ArticleDOI

Longitudinal data analysis using generalized linear models

TL;DR: In this article, an extension of generalized linear models to the analysis of longitudinal data is proposed, which gives consistent estimates of the regression parameters and of their variance under mild assumptions about the time dependence.
Journal ArticleDOI

Monte Carlo Sampling Methods Using Markov Chains and Their Applications

TL;DR: A generalization of the sampling method introduced by Metropolis et al. as mentioned in this paper is presented along with an exposition of the relevant theory, techniques of application and methods and difficulties of assessing the error in Monte Carlo estimates.