scispace - formally typeset
Open AccessJournal ArticleDOI

GMAN: A Graph Multi-Attention Network for Traffic Prediction

TLDR
GMAN as mentioned in this paper adapts an encoder-decoder architecture, where both the encoder and the decoder consist of multiple spatio-temporal attention blocks to model the impact of the spatiotemporal factors on traffic conditions, and proposes a graph multi-attention network (GMAN) to predict traffic conditions for time steps ahead at different locations on a road network graph.
Abstract
Long-term traffic prediction is highly challenging due to the complexity of traffic systems and the constantly changing nature of many impacting factors. In this paper, we focus on the spatio-temporal factors, and propose a graph multi-attention network (GMAN) to predict traffic conditions for time steps ahead at different locations on a road network graph. GMAN adapts an encoder-decoder architecture, where both the encoder and the decoder consist of multiple spatio-temporal attention blocks to model the impact of the spatio-temporal factors on traffic conditions. The encoder encodes the input traffic features and the decoder predicts the output sequence. Between the encoder and the decoder, a transform attention layer is applied to convert the encoded traffic features to generate the sequence representations of future time steps as the input of the decoder. The transform attention mechanism models the direct relationships between historical and future time steps that helps to alleviate the error propagation problem among prediction time steps. Experimental results on two real-world traffic prediction tasks (i.e., traffic volume prediction and traffic speed prediction) demonstrate the superiority of GMAN. In particular, in the 1 hour ahead prediction, GMAN outperforms state-of-the-art methods by up to 4% improvement in MAE measure. The source code is available at https://github.com/zhengchuanpan/GMAN.

read more

Content maybe subject to copyright    Report

Citations
More filters
Posted Content

Graph Neural Networks: A Review of Methods and Applications

TL;DR: A detailed review over existing graph neural network models is provided, systematically categorize the applications, and four open problems for future research are proposed.
Journal ArticleDOI

Graph Neural Networks: A Review of Methods and Applications

TL;DR: In this paper, the authors propose a general design pipeline for GNN models and discuss the variants of each component, systematically categorize the applications, and propose four open problems for future research.
Proceedings ArticleDOI

Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks

TL;DR: This paper proposes a general graph neural network framework designed specifically for multivariate time series data that outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information.
Posted Content

An Attentive Survey of Attention Models

TL;DR: A taxonomy that groups existing techniques into coherent categories in attention models is proposed, and how attention has been used to improve the interpretability of neural networks is described.
Posted Content

Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting

TL;DR: It is argued that learning node-specific patterns is essential for traffic forecasting while the pre-defined graph is avoidable, and two adaptive modules for enhancing Graph Convolutional Network (GCN) with new capabilities are proposed.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Posted Content

Semi-Supervised Classification with Graph Convolutional Networks

TL;DR: A scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs which outperforms related methods by a significant margin.
Proceedings Article

Rectified Linear Units Improve Restricted Boltzmann Machines

TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Posted Content

Sequence to Sequence Learning with Neural Networks

TL;DR: This paper presents a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure, and finds that reversing the order of the words in all source sentences improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
Related Papers (5)