scispace - formally typeset
Journal ArticleDOI

Traffic Flow Prediction With Big Data: A Deep Learning Approach

TLDR
A novel deep-learning-based traffic flow prediction method is proposed, which considers the spatial and temporal correlations inherently and is applied for the first time that a deep architecture model is applied using autoencoders as building blocks to represent traffic flow features for prediction.
Abstract
Accurate and timely traffic flow information is important for the successful deployment of intelligent transportation systems. Over the last few years, traffic data have been exploding, and we have truly entered the era of big data for transportation. Existing traffic flow prediction methods mainly use shallow traffic prediction models and are still unsatisfying for many real-world applications. This situation inspires us to rethink the traffic flow prediction problem based on deep architecture models with big traffic data. In this paper, a novel deep-learning-based traffic flow prediction method is proposed, which considers the spatial and temporal correlations inherently. A stacked autoencoder model is used to learn generic traffic flow features, and it is trained in a greedy layerwise fashion. To the best of our knowledge, this is the first time that a deep architecture model is applied using autoencoders as building blocks to represent traffic flow features for prediction. Moreover, experiments demonstrate that the proposed method for traffic flow prediction has superior performance.

read more

Citations
More filters
Proceedings ArticleDOI

Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting

TL;DR: Wang et al. as mentioned in this paper proposed a novel deep learning framework, Spatio-Temporal Graph Convolutional Networks (STGCN), to tackle the time series prediction problem in traffic domain.
Journal ArticleDOI

LSTM network: a deep learning approach for short-term traffic forecast

TL;DR: A novel traffic forecast model based on long short-term memory (LSTM) network is proposed, which considers temporal-spatial correlation in traffic system via a two-dimensional network which is composed of many memory units.
Journal ArticleDOI

T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction

TL;DR: In this article, a novel neural network-based traffic forecasting method, the temporal graph convolutional network (T-GCN) model, which is combined with the graph convolutionsal network and the gated recurrent unit (GRU), is proposed.
Journal ArticleDOI

Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction.

TL;DR: Wang et al. as mentioned in this paper proposed a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy.
Proceedings ArticleDOI

Using LSTM and GRU neural network methods for traffic flow prediction

TL;DR: This paper uses Long Short Term Memory and Gated Recurrent Units (GRU) neural network methods to predict short-term traffic flow, and experiments demonstrate that Recurrent Neural Network (RNN) based deep learning methods such as LSTM and GRU perform better than auto regressive integrated moving average (ARIMA) model.
References
More filters
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Journal ArticleDOI

A fast learning algorithm for deep belief nets

TL;DR: A fast, greedy algorithm is derived that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory.
Book

Learning Deep Architectures for AI

TL;DR: The motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer modelssuch as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks are discussed.
Proceedings ArticleDOI

A unified architecture for natural language processing: deep neural networks with multitask learning

TL;DR: This work describes a single convolutional neural network architecture that, given a sentence, outputs a host of language processing predictions: part-of-speech tags, chunks, named entity tags, semantic roles, semantically similar words and the likelihood that the sentence makes sense using a language model.
Proceedings Article

Greedy Layer-Wise Training of Deep Networks

TL;DR: These experiments confirm the hypothesis that the greedy layer-wise unsupervised training strategy mostly helps the optimization, by initializing weights in a region near a good local minimum, giving rise to internal distributed representations that are high-level abstractions of the input, bringing better generalization.
Related Papers (5)