scispace - formally typeset
Book ChapterDOI

Identification of Differentially Expressed Genes Using Deep Learning in Bioinformatics

TLDR
In this paper, SegNet and U-Net were applied to the microarray dataset of colon cancer (typically containing tumour and normal tissue samples) to extract the culprit/responsible gene.
Abstract
Bioinformatics data can be used for the ultimate prediction of diseases in different organisms. The microarray technology is a special form of 2D representation of genomic data characterized by an enormous number of genes across a handful of samples. The actual analysis of this data involves extraction or selection of the relevant genes from this vast amount of irrelevant and redundant data. These genes can be further used to predict classes of unknown samples. In this work, we have implemented two popular deep learning segmentation architectures, namely, SegNet and U-Net. These techniques have been applied to the microarray dataset of colon cancer (typically containing tumour and normal tissue samples) to extract the culprit/responsible gene. The performance of the reduced set formed from these genes has been compared across different classifiers using different existing methods of feature selection. It is found that both deep learning based approaches outperform the other methods. Lastly, the biological significance of the genes has also been verified using ontological tools, and the results are significant.

read more

References
More filters
Book ChapterDOI

U-Net: Convolutional Networks for Biomedical Image Segmentation

TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Journal ArticleDOI

Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.

TL;DR: By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.
Posted Content

U-Net: Convolutional Networks for Biomedical Image Segmentation

TL;DR: It is shown that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Proceedings Article

Rectified Linear Units Improve Restricted Boltzmann Machines

TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Journal ArticleDOI

SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

TL;DR: Quantitative assessments show that SegNet provides good performance with competitive inference time and most efficient inference memory-wise as compared to other architectures, including FCN and DeconvNet.
Related Papers (5)