Proceedings Article•
Learning Transferable Visual Models From Natural Language Supervision
18 Jul 2021-pp 8748-8763
TL;DR: In this paper, a pre-training task of predicting which caption goes with which image is used to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet.
Abstract: State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at this https URL.
Content maybe subject to copyright Report
Citations
More filters
Posted Content•
[...]
TL;DR: This paper showed that the most recent state-of-the-art image classification models are among the best calibrated models and that model size and pretraining is a major determinant of calibration properties.
Abstract: Accurate estimation of predictive uncertainty (model calibration) is essential for the safe application of neural networks. Many instances of miscalibration in modern neural networks have been reported, suggesting a trend that newer, more accurate models produce poorly calibrated predictions. Here, we revisit this question for recent state-of-the-art image classification models. We systematically relate model calibration and accuracy, and find that the most recent models, notably those not using convolutions, are among the best calibrated. Trends observed in prior model generations, such as decay of calibration with distribution shift or model size, are less pronounced in recent architectures. We also show that model size and amount of pretraining do not fully explain these differences, suggesting that architecture is a major determinant of calibration properties.
11 citations
[...]
TL;DR: A comprehensive survey and commentary on the explainability in multimodal deep neural networks, especially for the vision and language tasks, is presented in this article, including the significance, datasets, fundamental building blocks of the methods and techniques, challenges, applications, and future trends in this domain.
Abstract: Artificial Intelligence techniques powered by deep neural nets have achieved much success in several application domains, most significantly and notably in the Computer Vision applications and Natural Language Processing tasks. Surpassing human-level performance propelled the research in the applications where different modalities amongst language, vision, sensory, text play an important role in accurate predictions and identification. Several multimodal fusion methods employing deep learning models are proposed in the literature. Despite their outstanding performance, the complex, opaque and black-box nature of the deep neural nets limits their social acceptance and usability. This has given rise to the quest for model interpretability and explainability, more so in the complex tasks involving multimodal AI methods. This paper extensively reviews the present literature to present a comprehensive survey and commentary on the explainability in multimodal deep neural nets, especially for the vision and language tasks. Several topics on multimodal AI and its applications for generic domains have been covered in this paper, including the significance, datasets, fundamental building blocks of the methods and techniques, challenges, applications, and future trends in this domain.
5 citations
Posted Content•
[...]
TL;DR: Weight-space ensembles as mentioned in this paper ensembling the weights of the zero-shot and fine-tuned models provide large accuracy improvements out-of-distribution, while matching or improving in-disparity accuracy.
Abstract: Large pre-trained models such as CLIP offer consistent accuracy across a range of data distributions when performing zero-shot inference (i.e., without fine-tuning on a specific dataset). Although existing fine-tuning approaches substantially improve accuracy in-distribution, they also reduce out-of-distribution robustness. We address this tension by introducing a simple and effective method for improving robustness: ensembling the weights of the zero-shot and fine-tuned models. Compared to standard fine-tuning, the resulting weight-space ensembles provide large accuracy improvements out-of-distribution, while matching or improving in-distribution accuracy. On ImageNet and five derived distribution shifts, weight-space ensembles improve out-of-distribution accuracy by 2 to 10 percentage points while increasing in-distribution accuracy by nearly 1 percentage point relative to standard fine-tuning. These improvements come at no additional computational cost during fine-tuning or inference.
4 citations
Posted Content•
[...]
TL;DR: CLIP-Adapter as mentioned in this paper adopts an additional bottleneck layer to learn new features and performs residual-style feature blending with the original pre-trained features to achieve better vision-language models.
Abstract: Large-scale contrastive vision-language pre-training has shown significant progress in visual representation learning. Unlike traditional visual systems trained by a fixed set of discrete labels, a new paradigm was introduced in \cite{radford2021learning} to directly learn to align images with raw texts in an open-vocabulary setting. On downstream tasks, a carefully chosen text prompt is employed to make zero-shot predictions.~To avoid non-trivial prompt engineering, context optimization \cite{zhou2021coop} has been proposed to learn continuous vectors as task-specific prompts with few-shot training examples.~In this paper, we show that there is an alternative path to achieve better vision-language models other than prompt tuning.~While prompt tuning is for the textual inputs, we propose CLIP-Adapter to conduct fine-tuning with feature adapters on either visual or language branch. Specifically, CLIP-Adapter adopts an additional bottleneck layer to learn new features and performs residual-style feature blending with the original pre-trained features.~As a consequence, CLIP-Adapter is able to outperform context optimization while maintains a simple design. Experiments and extensive ablation studies on various visual classification tasks demonstrate the effectiveness of our approach.
3 citations
Posted Content•
[...]
TL;DR: It is argued that the semantic relationships between seen and unseen concepts affect generalization performance and proposed ImageNet-CoG,1 a novel benchmark on the ImageNet -21K (IN-21K) dataset that enables measuring concept generalization in a principled way.
Abstract: Measuring concept generalization, i.e., the extent to which models trained on a set of (seen) visual concepts can be leveraged to recognize a new set of (unseen) concepts, is a popular way of evaluating visual representations, especially in a self-supervised learning framework. Nonetheless, the choice of unseen concepts for such an evaluation is usually made arbitrarily, and independently from the seen concepts used to train representations, thus ignoring any semantic relationships between the two. In this paper, we argue that the semantic relationships between seen and unseen concepts affect generalization performance and propose ImageNet-CoG, a novel benchmark on the ImageNet-21K (IN-21K) dataset that enables measuring concept generalization in a principled way. Our benchmark leverages expert knowledge that comes from WordNet in order to define a sequence of unseen IN-21K concept sets that are semantically more and more distant from the ImageNet-1K (IN-1K) subset, a ubiquitous training set. This allows us to benchmark visual representations learned on IN-1K out-of-the box. We conduct a large-scale study encompassing 31 convolution and transformer-based models and show how different architectures, levels of supervision, regularization techniques and use of web data impact the concept generalization performance.
3 citations
Related Papers (5)
[...]
[...]
[...]
[...]
[...]