scispace - formally typeset
Open AccessBook

Mathematical Methods of Classical Mechanics

TLDR
In this paper, Newtonian mechanics: experimental facts investigation of the equations of motion, variational principles Lagrangian mechanics on manifolds oscillations rigid bodies, differential forms symplectic manifolds canonical formalism introduction to pertubation theory.
Abstract
Part 1 Newtonian mechanics: experimental facts investigation of the equations of motion. Part 2 Lagrangian mechanics: variational principles Lagrangian mechanics on manifolds oscillations rigid bodies. Part 3 Hamiltonian mechanics: differential forms symplectic manifolds canonical formalism introduction to pertubation theory.

read more

Citations
More filters
Journal ArticleDOI

Scalable molecular dynamics with NAMD

TL;DR: NAMD as discussed by the authors is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems that scales to hundreds of processors on high-end parallel platforms, as well as tens of processors in low-cost commodity clusters, and also runs on individual desktop and laptop computers.
Journal ArticleDOI

Constant pressure molecular dynamics algorithms

TL;DR: In this paper, a modularly invariant equations of motion are derived that generate the isothermal-isobaric ensemble as their phase space averages, and the resulting methods are tested on two problems, a particle in a one-dimensional periodic potential and a spherical model of C60 in the solid/fluid phase.
Journal ArticleDOI

Nosé-Hoover chains : the canonical ensemble via continuous dynamics

TL;DR: In this paper, a modification of the Nose-Hoover dynamics is proposed which includes not a single thermostat variable but a chain of variables, Nose chains, which gives the canonical distribution where the simple formalism fails.
Journal ArticleDOI

Berry phase effects on electronic properties

TL;DR: In this paper, a detailed review of the role of the Berry phase effect in various solid state applications is presented. And a requantization method that converts a semiclassical theory to an effective quantum theory is demonstrated.