scispace - formally typeset
Journal ArticleDOI

Mountain belts and the new global tectonics

TLDR
In this paper, it is proposed that mountain belts develop by deformation and metamorphism of the sedimentary and volcanic assemblages of Atlantic-type continental margins, resulting from the events associated with the rupture of continents and the expansion of oceans by plate generation at oceanic ridges.
Abstract
Analysis of the sedimentary, volcanic, structural, and metamorphic chronology in mountain belts, and consideration of the implications of the new global tectonics (plate tectonics), strongly indicate that mountain belts are a consequence of plate evolution. It is proposed that mountain belts develop by the deformation and metamorphism of the sedimentary and volcanic assemblages of Atlantic-type continental margins. These assemblages result from the events associated with the rupture of continents and the expansion of oceans by lithosphere plate generation at oceanic ridges. The earliest assemblages thus developed are volcanic rocks and coarse clastic sediments deposited in fault-bounded troughs on a distending and segmenting continental crust, subsequently split apart and carried away from the ridge on essentially aseismic continental margins. As the continental margins move away from the ridge, nonvolcanic continental shelf and rise assemblages of orthoquartzite-carbonate, and lutite (shelf), and lutite, slump deposits, and turbidites (rise) accumulate. This kind of continental margin is transformed into an orogenic belt in one of two ways. If a trench develops near, or at, the continenal margin to consume lithosphere from the oceanic side, a mountain belt (cordilleran type) grows by dominantly thermal mechanisms related to the rise of calc-alkaline and basaltic magmas. Cordilleran-type mountain belts are characterized by paired metamorphic belts (blueschist on the oceanic side and high temperature on the continental side) and divergent thrusting and synorogenic sediment transport from the high-temperature volcanic axis. If the continental margin collides with an island arc, or with another continent, a collision-type mountain belt develops by dominantly mechanical processes. Where a continent/island arc collision occurs, the resulting mountains will be small (e.g., the Tertiary fold belt of northern New Guinea), and a new trench will develop on the oceanic side of the arc. Where a continent/continent collision occurs, the mountains will be large (e.g., the Himalayas), and the single trench zone of plate consumption is replaced by a wide zone of deformation. Collision-type mountain belts do not have paired metamorphic belts; they are characterized by a single dominant direction of thrusting and synorogenic sediment transport, away from the site of the trench over the underthrust plate. Stratigraphic sequences of mountain belts (geosynclinal sequences) match those asciated with present-day oceans, island arcs, and continental margins.

read more

Citations
More filters
Journal ArticleDOI

Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision.

Peter Molnar, +1 more
- 08 Aug 1975 - 
TL;DR: The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world, supported by libraries, scholarly societies, publishers, and foundations.
Book

The Mechanics of Earthquakes and Faulting

TL;DR: The connection between faults and the seismicity generated is governed by the rate and state dependent friction laws -producing distinctive seismic styles of faulting and a gamut of earthquake phenomena including aftershocks, afterslip, earthquake triggering, and slow slip events.
Journal ArticleDOI

Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations

TL;DR: In this article, a model for the Cenozoic development of the region of SE Asia and the SW Pacific is presented and its implications are discussed, accompanied by computer animations in a variety of formats.
Journal ArticleDOI

Extension in the Tyrrhenian Sea and Shortening in the Apennines as Result of Arc Migration Driven by Sinking of the Lithosphere

TL;DR: In this paper, an arc migration model was proposed to explain the dynamic relationship between extension in the Tyrrhenian basin and compression in the Apennines, and the estimated contemporaneous (post-middle Miocene) amounts of extension and shortening in the apennines appear to be very similar.
Journal ArticleDOI

Plate Tectonics and the Evolution of the Alpine System

TL;DR: A detailed assembly of the outlines of the continents around the North and central Atlantic, before the initial dispersion of Gondwanaland in Early Jurassic times, is presented in this paper.
References
More filters
Journal ArticleDOI

Structural History and Tectonics of Iran: A Review

Jovan Stocklin
- 01 Jul 1968 - 
TL;DR: The structural development of the Iranian ranges has certain peculiarities which contradict the conventional geosynclinal theory of mountain building as mentioned in this paper, and the conventional tripartite division of Iran into an extensive median mass and two bordering ranges of geosyclinal origin (Zagros, Alborz) cannot be maintained.
Journal ArticleDOI

Seismology and the new global tectonics

TL;DR: In this article, a comprehensive study of the observations of seismology provides widely based strong support for the new global tectonics which is founded on the hypotheses of continental drift, sea-floor spreading, transform faults and underthrusting of the lithosphere at island arcs.
Journal ArticleDOI

Sea-floor spreading and continental drift

TL;DR: In this article, a geometrical model of the surface of the earth is obtained in terms of rigid blocks in relative motion with respect to each other, and a simplified but complete and consistent picture of the global pattern of surface motion is given on the basis of data on sea-floor spreading.
Journal ArticleDOI

Rises, trenches, great faults, and crustal blocks

TL;DR: In this article, the transform fault concept is extended to a spherical surface, where the motion of one block relative to another block may then be described by a rotation of a rigid crustal blocks relative to the other block.
Journal ArticleDOI

Did the Atlantic Close and then Re-Open?

J. Tuzo Wilson
- 13 Aug 1966 -