scispace - formally typeset
Open AccessJournal ArticleDOI

NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries☆

Reads0
Chats0
TLDR
In this paper, the partial substitution of metal element for Fe in O3-type NaFeO 2 -based materials is proved to suppress the irreversible phase transition, and thus improving the reversibility of sodium removal/insertion as the electrode materials.
About
This article is published in Electrochemistry Communications.The article was published on 2013-09-01 and is currently open access. It has received 248 citations till now.

read more

Citations
More filters
Journal ArticleDOI

Sodium-ion batteries: present and future

TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Journal ArticleDOI

From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises.

TL;DR: This review provides a state-of-the art overview on the redox behavior of materials when used as electrodes in lithium-ion and sodium-ion batteries, respectively.
Journal ArticleDOI

A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries

TL;DR: In this article, a comprehensive review of layered oxides (NaTMO2, TM = Ti, V, Cr, Mn, Fe, Co, Ni, and a mixture of 2 or 3 elements) as a viable Na-ion battery cathode is presented.
References
More filters
Journal ArticleDOI

VESTA: a three-dimensional visualization system for electronic and structural analysis

TL;DR: VESTA as mentioned in this paper is a cross-platform program for visualizing both structural and volumetric data in multiple windows with tabs, including isosurfaces, bird's-eye views and two-dimensional maps.
Journal ArticleDOI

Sodium‐Ion Batteries

TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Journal ArticleDOI

Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries

TL;DR: In this paper, both negative and positive electrode materials in NIB are briefly reviewed, and it is concluded that cost-effective NIB can partially replace Li-ion batteries, but requires further investigation and improvement.
Journal ArticleDOI

Three-dimensional Visualization in Powder Diffraction

TL;DR: A new three-dimensional visualization system, VESTA, is developed, using wxWidgets as a C++ application framework, which excels in visualization, rendering, and manipulation of crystal structures and electron/nuclear densities determined by X-ray/ neutron diffraction and electronic-structure calculations.
Journal ArticleDOI

P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries

TL;DR: A new electrode material, P2-Na(2/3)[Fe(1/2)Mn( 1/2)]O(2), that delivers 190 mAh g(-1) of reversible capacity in the sodium cells with the electrochemically active Fe(3+)/Fe(4+) redox will contribute to the development of rechargeable batteries from the earth-abundant elements operable at room temperature.
Related Papers (5)